Forward and Reverse Gradient-Based Hyperparameter Optimization

Luca Franceschi 1,2, Michele Donini 1, Paolo Frasconi 3, Massimiliano Pontil 1,2

1Istituto Italiano di Tecnologia, Genoa, Italy
2Dept of Computer Science, University College London, UK
3Dept of Information Engineering, Universit degli Studi di Firenze, Italy

ICML 2017/ Presenter: Ji Gao
Outline

1 Motivation

2 Method
 • Overview
 • Optimization

3 Complexity analysis

4 Experiment
Choose hyperparameters in optimization are hard
Could we automatically select hyperparameters?
Hyperparameter optimization: Construct a response function of the hyperparameters and explore the hyperparameter space to seek an optimum
Related Work

- Grid search: List parameters on a grid and train all of them. Problem: Impractical when number of hyperparameters is large. Even outperform by random search.

- Bayesian optimization: Treat the global process as a random function and place a prior over it. After that, construct an acquisition function (referred to as infill sampling criteria) that determines the next query point.

- Gradient-based methods: Use the gradient method to optimize hyperparameters.
Hyperparameters

s: state in R^d, including weights (object) and hyperparameters λ.

$$s_t = \Phi_t(s_{t-1}, \lambda)$$

An example in such definition:

Gradient Descent with Momentum

w: weights. J: objective function. λ: hyperparameters

$s_t = (v_t, w_t)$:

$$v_t = \mu v_{t-1} + \nabla J_t(w_{t-1})$$

$$w_t = w_{t-1} - \eta(\mu v_{t-1} - \nabla J_t(w_{t-1}))$$

In this case: $\lambda = (\mu, \eta)$
Problem formulation

Goal of hyperparameter optimization

Solve:

$$\min_{\lambda} f(\lambda)$$

Where a response function $f : R^m \rightarrow R$ is defined at $\lambda \in R^m$ as

$$f(\lambda) = E(s_T(\lambda))$$

E: Validation error
Problem formulation - Optimization

Goal of hyperparameter optimization

Solve:

\[
\min_{\lambda, s_1, \ldots, s_T} E(s_T)
\]

Subject to: \(s_t = \Phi_t(s_{t-1}, \lambda) \)

- Lagrangian:

\[
L(s, \lambda, \alpha) = E(s_T) + \sum_{t=1}^{T} \alpha_t (\Phi_t(s_{t-1}, \lambda) - s_t)
\]
Lagrangian:

\[L(s, \lambda, \alpha) = E(s_T) + \sum_{t=1}^{T} \alpha_t(\Phi_t(s_{t-1}, \lambda) - s_t) \]

Derivatives of Lagrangian:

\[\frac{\partial L}{\partial a_t} = \Phi_t(s_{t-1}, \lambda) - s_t, \quad t = 1..T \]

\[\frac{\partial L}{\partial s_t} = a_{t+1} \frac{\partial \Phi_t(s_t, \lambda)}{\partial s_t} - a_t, \quad t = 1..T \]

\[\frac{\partial L}{\partial s_T} = \nabla E(s_T) - a_T \]

\[\frac{\partial L}{\partial \lambda} = \sum_{t=1}^{T} \alpha_t \frac{\partial \Phi_t(s_{t-1}, \lambda)}{\partial \lambda} \]
Solution can be achieved by setting each derivatives to 0.

Solution:

Let $A_t = \frac{\partial \Phi_t(s_{t-1}, \lambda)}{\partial s_{t-1}}$, $B_t = \frac{\partial \Phi_t(s_{t-1}, \lambda)}{\partial \lambda}$

The solution is:

$$a_t = \nabla E(s_T) A_{t+1} \ldots A_T$$

And we have:

$$\frac{\partial L}{\partial \lambda} = \nabla E(s_T) \sum_{t=1}^{T} (A_{t+1} \ldots A_T) B_t$$

(1)
Algorithm 1 HO-REVERSE

Input: λ current values of the hyperparameters, s_0 initial optimization state
Output: Gradient of validation error w.r.t. λ

for $t = 1$ to T do
 $s_t = \Phi_t(s_{t-1}, \lambda)$
end for

$\alpha_T = \nabla E(s_T)$
$g = 0$

for $t = T - 1$ downto 1 do
 $\alpha_t = \alpha_{t+1} A_{t+1}$
 $g = g + \alpha_t B_t$
end for

return g
Another way to Calculate

- We have:
 \[\nabla f(\lambda) = \nabla E(S_T) \frac{ds_T}{d\lambda} \]

- Let \[Z_t = \frac{ds_T}{d\lambda}, \]
 \[Z_t = A_t Z_{t-1} + B_t \]

- Lead to a recursive solution
Algorithm 2 HO-FORWARD

Input: λ current values of the hyperparameters, s_0 initial optimization state

Output: Gradient of validation error w.r.t. λ

$Z_0 = 0$

for $t = 1$ to T do

$s_t = \Phi_t(s_{t-1}, \lambda)$

$Z_t = A_tZ_{t-1} + B_t$

end for

return $\nabla E(s)Z_T$

- Can be real-time updated.
Algorithmic Differentiation: Techniques to numerically evaluate the derivative of a function.

Two modes of AD: Forward mode and Reverse mode.
Complexity of Algorithmic Differentiation

- Complexity of calculating the Jacobian matrix (the matrix of all first-order partial derivatives):
 Suppose $f : \mathbb{R}^n \to \mathbb{R}^p$ can be evaluated in time $c(n, p)$ and space $s(n, p)$. We have:
 - For any vector $r \in \mathbb{R}^n$, product of r and Jacobian matrix $J_F r$ can be evaluated in time $O(c(n, p))$ and space $O(s(n, p))$ using forward mode AD.
 - For any vector $q \in \mathbb{R}^p$, product of q and Jacobian matrix $q^T J_F$ can be evaluated in time $O(c(n, p))$ and space $O(s(n, p))$ using reverse mode AD.
 - Jacobian can be calculated in time $O(nc(n, p))$ using forward mode, and $O(pc(n, p))$ using reverse mode.
Suppose $s_t = \Phi_t(s_{t-1}, \lambda)$ can be updated in time $g(d, m)$ and space $h(d, m)$. For Algorithm 1:

```
Algorithm 1 HO-REVERSE

Input: $\lambda$ current values of the hyperparameters, $s_0$ initial optimization state
Output: Gradient of validation error w.r.t. $\lambda$
for $t = 1$ to $T$ do
    $s_t = \Phi_t(s_{t-1}, \lambda)$
end for
$\alpha_T = \nabla E(s_T)$
$g = 0$
for $t = T - 1$ downto 1 do
    $\alpha_t = \alpha_{t+1} A_{t+1}$
    $g = g + \alpha_t B_t$
end for
return $g$
```

Each step of $a_{t+1} A_{t+1}$ and $a_t B_t$ cost $O(g(d, m))$ time. So it’s totally $O(Tg(d, m))$ time. For space, we need to store all s_t, which requires $O(Th(d, m))$ space.
Complexity - Algorithm 2

For Algorithm 2:

```
Algorithm 2 HO-FORWARD

Input: λ current values of the hyperparameters, s₀ initial optimization state
Output: Gradient of validation error w.r.t. λ
Z₀ = 0
for t = 1 to T do
  sₜ = Φₜ(sₜ₋₁, λ)
  Zₜ = AₜZₜ₋₁ + Bₜ
end for
return ∇E(s)Zₜ
```

Each step of $A_t Z_{t+1}$ require m Jacobian vector multiplication, so the cost is $O(mg(d, m))$ time. So it’s totally $O(Tmg(d, m))$ time. For space, we only need to store the current s_t, which requires $O(h(d, m))$ space.
Experiment 1 - Data Hyper-cleaning

- Task: Have a large dataset with corrupted labels. Can only afford to clean a subset. Train a model.
- Method: Weighting every training sample a hyperparameter in \([0,1]\). Train with a weighted loss on the cleaned validation set.
- Train a plain softmax regression model with weight \(W\) and bias \(b\).
- Optimization problem:

\[
\begin{align*}
\min_{\lambda} & \quad E_{\text{val}}(W_T, b_T) \\
\text{Subject to:} & \quad \lambda \in [0, 1]^{N_{tr}}, \|\lambda\|_1 \leq R
\end{align*}
\]

- Experiment design: 5000 examples from MNIST dataset as the training data, corrupt 2500 of them. Have 5000 more as validation data, and 10000 as test set.
Experiment 1 result

Table 1: Test accuracies for the baseline, the oracle, and using data hyper-cleaning with four different values of R. The reported F_1 measure is the performance of the hyper-cleaner in correctly identifying the corrupted training examples.

<table>
<thead>
<tr>
<th></th>
<th>Accuracy %</th>
<th>F_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle</td>
<td>90.46</td>
<td>1.0000</td>
</tr>
<tr>
<td>Baseline</td>
<td>87.74</td>
<td>-</td>
</tr>
<tr>
<td>DH-1000</td>
<td>90.07</td>
<td>0.9137</td>
</tr>
<tr>
<td>DH-1500</td>
<td>90.06</td>
<td>0.9244</td>
</tr>
<tr>
<td>DH-2000</td>
<td>90.00</td>
<td>0.9211</td>
</tr>
<tr>
<td>DH-2500</td>
<td>90.09</td>
<td>0.9217</td>
</tr>
</tbody>
</table>

Oracle: Train with 2500 correct samples together with validation set.
Baseline: Train with corrupted data and validation set.
DH-R: Optimize and find a cleaned subset D_c with a different R value, and finally train with D_c and the validation set.
Figure 2: Right vertical axis: accuracies of DH-1000 on validation and test sets. Left vertical axis: number of discarded examples among noisy (True Positive, TP) and clean (False Positive, FP) ones.

It can successfully discard corrupted samples.
Experiment 2 - Multiple task learning

- Task: Find simultaneously the model of several different related tasks. For example, few shot learning.

- Experiment design: Try both CIFAR-10 and CIFAR-100. 50 samples on CIFAR-10, 300 samples on CIFAR-100 as training set. Same size of validation set, and all rest for testing. Use pretrained Inception-V3 model to fetch the feature.

- Use a regularizer from [Evgeniou et al., 2005]
 \[\Omega_{A,\rho}(W) = \sum_{j,k=1}^{K} A_{j,k} ||w_j - w_k||_2^2 + \rho \sum_{k=1}^{K} ||w_k||^2 \]

- Training error \(E_{tr}(W) = \sum_{i} l(Wx_i + b, y_i) + \Omega_{A,\rho}(W) \)

- Optimization problem:
 \[
 \min_{\lambda} E_{val}(W_T, b_T) \\
 \text{Subject to: } \rho \geq 0, A \geq 0
 \]
Table 2: Test accuracy ± standard deviation on CIFAR-10 and CIFAR-100 for single task learning (STL), naive MTL (NMTL) and our approach without (HMTL) and with (HMTL-S) the L1-norm constraint on matrix A.

<table>
<thead>
<tr>
<th></th>
<th>CIFAR-10</th>
<th>CIFAR-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>STL</td>
<td>67.47±2.78</td>
<td>18.99±1.12</td>
</tr>
<tr>
<td>NMTL</td>
<td>69.41±1.90</td>
<td>19.19±0.75</td>
</tr>
<tr>
<td>HMTL</td>
<td>70.85±1.87</td>
<td>21.15±0.36</td>
</tr>
<tr>
<td>HMTL-S</td>
<td>71.62±1.34</td>
<td>22.09±0.29</td>
</tr>
</tbody>
</table>

HMTL-S algorithm find the following relationship graph:

Figure 3: Relationship graph of CIFAR-10 classes. Edges represent interaction strength between classes.
Task: Phone state classification over 183 classes.

Experiment design: Data: TIMIT phonetic recognition dataset. Model: A previous multi task learning framework [Badino, 2016].

Hyperparameters: learning rate η, momentum μ and ρ, a hyperparameter of the algorithm
Table 3: Frame level phone-state classification accuracy on standard TIMIT test set and execution time in minutes on one Titan X GPU. For RS, we set a time budget of 300 minutes.

<table>
<thead>
<tr>
<th></th>
<th>Accuracy %</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanilla</td>
<td>59.81</td>
<td>12</td>
</tr>
<tr>
<td>RS</td>
<td>60.36</td>
<td>300</td>
</tr>
<tr>
<td>RTHO</td>
<td>61.97</td>
<td>164</td>
</tr>
<tr>
<td>RTHO-NT</td>
<td>61.38</td>
<td>289</td>
</tr>
</tbody>
</table>
Figure 4: The horizontal axis runs with the hyper-batches. Top-left: frame level accuracy on mini-batches (Training) and on a randomly selected subset of the validation set (Validation). Top-right: validation error E_{val} on the same subset of the validation set. Bottom-left: evolution of optimizer hyperparameters η and μ. Bottom-right: evolution of design hyperparameter ρ.