Conditional Image Generation with PixelCNN Decoders

Aaron van den Oord1 Nal Kalchbrenner1 Oriol Vinyals1 Lasse Espeholt1 Alex Graves1 Koray Kavukcuoglu1

1Google DeepMind

NIPS, 2016
Presenter: Beilun Wang
Outline

1 Introduction
 - Motivation
 - Previous Solutions
 - Contributions

2 Proposed Methods
 - PixelCNN
 - Conditional PixelCNN

3 Summary
Outline

1 Introduction
 • Motivation
 • Previous Solutions
 • Contributions

2 Proposed Methods
 • PixelCNN
 • Conditional PixelCNN

3 Summary
Motivation:

- Conditional image generator with image density model.
- This generator can also be conditioned on class labels, descriptions and a single human face.
- Fast and parallel training.
Problem Setting:

- Input: Image with missing pixels, OR image class labels, OR a vector in the embedded space, OR a single human face
- Target: joint distribution consisting of conditional distribution with CNN.
- Output: Image
- PixelCNN (Pixel RNN):

\[
p(x) = \prod_{i=1}^{n^2} p(x_i|x_1, \ldots, x_{i-1}) \tag{1}
\]

- Conditional Version:

\[
p(x|h) = \prod_{i=1}^{n^2} p(x_i|x_1, \ldots, x_{i-1}, h) \tag{2}
\]

- B conditioned on (R,G); G conditioned on R.
Outline

1 Introduction
 • Motivation
 • Previous Solutions
 • Contributions

2 Proposed Methods
 • PixelCNN
 • Conditional PixelCNN

3 Summary
Previous Solutions

- PixelRNN

Figure: PixelRNN
Outline

1 Introduction
 - Motivation
 - Previous Solutions
 - Contributions

2 Proposed Methods
 - PixelCNN
 - Conditional PixelCNN

3 Summary
Contributions

- A fast and parallel trainable deep neural nets model for conditional image generator (?)
- Gated convolutional layers
- Conditional Gated convolutional layers
Outline

1 Introduction
 • Motivation
 • Previous Solutions
 • Contributions

2 Proposed Methods
 • PixelCNN
 • Conditional PixelCNN

3 Summary
Input: $N \times N \times 3$

Output: $N \times N \times 3 \times 256$

Figure: PixelCNN

Only above and left Pixels are considered.
Masked Filter

![Masked Filter Image](image-url)
Blind spot

Vertical stack

Horizontal stack
The gates in LSTM may help it to model more complex interactions.
This is also studied by paper like Highway networks, grid LSTM, and Neural GPUs.

\[y = \tanh(W_{k,f} \ast x) \odot \sigma(W_{k,g} \ast x) \] (3)
Figure: Gated Convolutional Layers
Outline

1 Introduction
 - Motivation
 - Previous Solutions
 - Contributions

2 Proposed Methods
 - PixelCNN
 - Conditional PixelCNN

3 Summary
Conditional PixelCNN

- replace $p(x|h)$ from $p(x)$.

$$y = \tanh(W_{k,f} * x + V_{k,f}^T h) \odot \sigma(W_{k,g} * x + V_{k,g}^T h)$$ (4)
Use a deconvolutional neural nets $m()$

map h back to the image space as s

$$y = \tanh(W_{k,f} \ast x + V_{k,f}^T s) \odot \sigma(W_{k,g} \ast x + V_{k,g}^T s)$$ (5)
Experiment Results—image generation based on labels

African elephant

Coral Reef

Sandbar

Sorrel horse

Lhasa Apso (dog)

Lawn mower

Brown bear

Robin (bird)
Experiment Results–image generation based on a single human face
Summary

- This paper improves the PixelCNN by the gated activation unit
- This paper extends the PixelCNN to a conditional version