Outline

1. Introduction
 - Motivation
 - Background
 - State-of-the-art
 - Drawbacks

2. Proposed Approach
 - DeepLIFT Method
 - Defining Reference
 - Solution
 - Multipliers and Chain Rule
 - Separating positive and negative contribution
 - Rules for assigning contributions

3. Results
 - MNIST digit classification
 - DNA sequence classification
Outline

1 Introduction
 - Motivation
 - Background
 - State-of-the-art
 - Drawbacks

2 Proposed Approach
 - DeepLIFT Method
 - Defining Reference
 - Solution
 - Multipliers and Chain Rule
 - Separating positive and negative contribution
 - Rules for assigning contributions

3 Results
 - MNIST digit classification
 - DNA sequence classification
Motivation

- **Interpretability of neural networks**: Assign importance score to inputs for a given output.
Motivation

- **Interpretability of neural networks**: Assign importance score to inputs for a given output.
- Importance is defined in terms of differences from a ‘reference’ state.
Motivation

- **Interpretability of neural networks**: Assign importance score to inputs for a given output.
- Importance is defined in terms of differences from a ‘reference’ state.
- Propagates importance signal even when gradient is zero.
Motivation

- **Interpretability of neural networks**: Assign importance score to inputs for a given output.
- Importance is defined in terms of differences from a ‘reference’ state.
- Propagates importance signal even when gradient is zero.
- Gives separate consideration to positive and negative contributions.
Outline

1 Introduction
 - Motivation
 - Background
 - State-of-the-art
 - Drawbacks

2 Proposed Approach
 - DeepLIFT Method
 - Defining Reference
 - Solution
 - Multipliers and Chain Rule
 - Separating positive and negative contribution
 - Rules for assigning contributions

3 Results
 - MNIST digit classification
 - DNA sequence classification
Outline

1 Introduction
 • Motivation
 • Background
 • **State-of-the-art**
 • Drawbacks

2 Proposed Approach
 • DeepLIFT Method
 • Defining Reference
 • Solution
 • Multipliers and Chain Rule
 • Separating positive and negative contribution
 • Rules for assigning contributions

3 Results
 • MNIST digit classification
 • DNA sequence classification
State-of-the-art

- **Backpropagation-based approaches:** Saliency maps: Simonyan et al. (2013), Guided Backpropagation: Springenberg et al. (2014)
Outline

1. Introduction
 - Motivation
 - Background
 - State-of-the-art
 - Drawbacks

2. Proposed Approach
 - DeepLIFT Method
 - Defining Reference
 - Solution
 - Multipliers and Chain Rule
 - Separating positive and negative contribution
 - Rules for assigning contributions

3. Results
 - MNIST digit classification
 - DNA sequence classification
Saturation problem

\[y = (i_1 + i_2) \text{ when } (i_1 + i_2) < 1 \]
\[= 1 \text{ when } (i_1 + i_2) \geq 1 \]
Saturation problem

\[y = (i_1 + i_2) \text{ when } (i_1 + i_2) < 1 \\
= 1 \quad \text{ when } (i_1 + i_2) \geq 1 \]

When \((i_1 + i_2) \geq 1\), gradient is 0

\[h = \max(0, 1 - i_1 - i_2) \]

\[y = 1 - h \]
Thresholding Problem

\[y = \max(0, x - 10) \]
Outline

1. Introduction
 - Motivation
 - Background
 - State-of-the-art
 - Drawbacks

2. Proposed Approach
 - DeepLIFT Method
 - Defining Reference
 - Solution
 - Multipliers and Chain Rule
 - Separating positive and negative contribution
 - Rules for assigning contributions

3. Results
 - MNIST digit classification
 - DNA sequence classification
Philosophy

- Explains difference in output from some ‘reference’ output in terms of difference on input from some ‘reference’ input.
Philosophy

- Explains difference in output from some ‘reference’ output in terms of difference on input from some ‘reference’ input.
- **Summation-to-delta property:**

\[\sum_{i=1}^{n} C_{\Delta x_i} \Delta t = \Delta t \]

(1)
Explain difference in output from some ‘reference’ output in terms of difference on input from some ‘reference’ input.

Summation-to-delta property:

\[\sum_{i=1}^{n} C_{\Delta x_i} \Delta t = \Delta t \] \hspace{1cm} (1)

Blame \(\Delta t \) on \(\Delta x_1, \Delta x_2, \ldots \)
Philosophy

- Explains difference in output from some ‘reference’ output in terms of difference on input from some ‘reference’ input.

- **Summation-to-delta property:**

\[\sum_{i=1}^{n} C_{\Delta x_i} \Delta t = \Delta t \] (1)

- Blame \(\Delta t \) on \(\Delta x_1, \Delta x_2, \ldots \)

- \(C_{\Delta x_i} \Delta t \) can be non-zero even when \(\frac{\delta t}{\delta x_i} \) is zero.
Outline

1 Introduction
 - Motivation
 - Background
 - State-of-the-art
 - Drawbacks

2 Proposed Approach
 - DeepLIFT Method
 - Defining Reference
 - Solution
 - Multipliers and Chain Rule
 - Separating positive and negative contribution
 - Rules for assigning contributions

3 Results
 - MNIST digit classification
 - DNA sequence classification
Defining Reference

- Given neuron x with inputs i_1, i_2, \ldots such that $x = f(i_1, i_2, \ldots)$
- Given reference activations i^0_1, i^0_2, \ldots of the input:
 \[x^0 = f(i^0_1, i^0_2, \ldots) \]

- Choose reference input and propagate activations though the net.
- Good reference will rely on domain knowledge: “What am I interested in measuring difference against?”
Outline

1 Introduction
 ● Motivation
 ● Background
 ● State-of-the-art
 ● Drawbacks

2 Proposed Approach
 ● DeepLIFT Method
 ● Defining Reference
 ● Solution
 ● Multipliers and Chain Rule
 ● Separating positive and negative contribution
 ● Rules for assigning contributions

3 Results
 ● MNIST digit classification
 ● DNA sequence classification
Saturation Problem

\[y = (i_1 + i_2) \text{ when } (i_1 + i_2) < 1 \]
\[= 1 \quad \text{ when } (i_1 + i_2) \geq 1 \]
Reference: \(i_1 = 0 \) & \(i_2 = 0 \)

\[h = 1 - y \]

\[h = \max(0, 1 - i_1 - i_2) \]

At \((i_1 + i_2) = 2\), the "difference from reference" is -1, NOT 0.

\(h = 1 \) when \((i_1 + i_2) = 0\) (reference)
Thresholding Problem

\[y = \max(0, x - 10) \]

“difference from reference” (if ref. = 0)

\[
\begin{align*}
\text{gradient} & \quad \text{grad*inp} \\
0 & \quad 10 & \quad 0 & \quad 10 & \quad x
\end{align*}
\]
Outline

1 Introduction
 - Motivation
 - Background
 - State-of-the-art
 - Drawbacks

2 Proposed Approach
 - DeepLIFT Method
 - Defining Reference
 - Solution
 - Multipliers and Chain Rule
 - Separating positive and negative contribution
 - Rules for assigning contributions

3 Results
 - MNIST digit classification
 - DNA sequence classification
Multipliers

\[m_{\Delta x \Delta t} = \frac{C_{\Delta x \Delta t}}{\Delta t} \] \hspace{1cm} (3)

- Multiplier is the contribution of \(\Delta x \) to \(\Delta t \) divided by \(\Delta x \)
- Compare: partial derivative = \(\frac{\delta t}{\delta x} \)
- Infinitesimal contribution of \(\delta x \) to \(\delta t \), divided by \(\delta x \)
Chain Rule

\[m \Delta x_i \Delta z = \sum_j m \Delta x_i \Delta y_j m \Delta y_j \Delta z \] (4)

- Can be computed efficiently via backpropagation
Outline

1 Introduction
 - Motivation
 - Background
 - State-of-the-art
 - Drawbacks

2 Proposed Approach
 - DeepLIFT Method
 - Defining Reference
 - Solution
 - Multipliers and Chain Rule
 - Separating positive and negative contribution
 - Rules for assigning contributions

3 Results
 - MNIST digit classification
 - DNA sequence classification
In some cases, important to treat positive and negative contributions differently.

Introduce Δx_i^+ and Δx_i^-, such that:

$$\Delta x_i = \Delta x_i^+ + \Delta x_i^-; \ C_{\Delta x_i} \Delta t = C_{\Delta x_i^+} \Delta t + C_{\Delta x_i^-} \Delta t$$
Outline

1 Introduction
 • Motivation
 • Background
 • State-of-the-art
 • Drawbacks

2 Proposed Approach
 • DeepLIFT Method
 • Defining Reference
 • Solution
 • Multipliers and Chain Rule
 • Separating positive and negative contribution
 • Rules for assigning contributions

3 Results
 • MNIST digit classification
 • DNA sequence classification
• For $y = b + \sum_i w_i x_i$, we have $\Delta y = \sum_i w_i \Delta x_i$

• Define: $\Delta y^+ = \sum_i 1\{w_i \Delta x_i > 0\} w_i \Delta x_i$

 $\Delta y^- = \sum_i 1\{w_i \Delta x_i < 0\} w_i \Delta x_i$

 $= \sum_i 1\{w_i \Delta x_i > 0\} w_i (\Delta x_i^+ + \Delta x_i^-)$
 $= \sum_i 1\{w_i \Delta x_i < 0\} w_i (\Delta x_i^+ + \Delta x_i^-)$

$C_{\Delta x_i^+ \Delta y^+} = 1\{w_i \Delta x_i > 0\} w_i \Delta x_i^+$

$C_{\Delta x_i^+ \Delta y^-} = 1\{w_i \Delta x_i < 0\} w_i \Delta x_i^+$

$C_{\Delta x_i^- \Delta y^+} = 1\{w_i \Delta x_i > 0\} w_i \Delta x_i^-$

$C_{\Delta x_i^- \Delta y^-} = 1\{w_i \Delta x_i < 0\} w_i \Delta x_i^-$

$m_{\Delta x_i^+ \Delta y^+} = m_{\Delta x_i^- \Delta y^+} = 1\{w_i \Delta x_i > 0\} w_i$

$m_{\Delta x_i^+ \Delta y^-} = m_{\Delta x_i^- \Delta y^-} = 1\{w_i \Delta x_i < 0\} w_i$

• When $\Delta x = 0$ (but Δx^+ and Δx^- are not necessarily zero): $m_{\Delta x_i^+ \Delta y^+} = m_{\Delta x_i^+ \Delta y^-} = 0.5 w_i$
Rescale Rule

\[y = f(x) \]

- Set \(\Delta y^+ \) and \(\Delta y^- \) proportional to \(\Delta x^+ \) and \(\Delta x^- \)

\[
\begin{align*}
\Delta y^+ &= \frac{\Delta y}{\Delta x} \Delta x^+ = C_{\Delta x^+} \Delta y^+ \\
\Delta y^- &= \frac{\Delta y}{\Delta x} \Delta x^- = C_{\Delta x^-} \Delta y^-
\end{align*}
\]

\[
m_{\Delta x^+} \Delta y^+ = m_{\Delta x^-} \Delta y^- = m_{\Delta x} \Delta y = \frac{\Delta y}{\Delta x}
\]
Where it works

Gradient\(\Delta\)input assigns: \(i_1 = 2, i_2 = 4\), bias: -3
Where it works

\[y = 2h_1 + 2h_2 \]

\[m_{\Delta h_1 \Delta y} = 2 \]
\[m_{\Delta h_2 \Delta y} = 2 \]

\[h_1 = \max(0, i_1) \]
\[h_2 = \max(0, i_2 - 1.5) \]

\[m_{\Delta i_1 \Delta h_1} = \frac{\Delta h_1}{\Delta i_1} = 1 \]
\[m_{\Delta i_2 \Delta h_2} = \frac{\Delta h_2}{\Delta i_2} = \frac{1}{4} \]

\[\Delta i_1 = 1 \]
\[\Delta i_2 = 2 \]

\[m_{\Delta i_1 \Delta y} = m_{\Delta i_1 \Delta h_1} m_{\Delta h_1 \Delta y} = 2 \]
\[C_{\Delta i_1 \Delta y} = m_{\Delta i_1 \Delta y} \Delta i_1 = 2 \]

\[m_{\Delta i_2 \Delta y} = m_{\Delta i_2 \Delta h_2} m_{\Delta h_2 \Delta y} = 0.5 \]
\[C_{\Delta i_2 \Delta y} = m_{\Delta i_2 \Delta y} \Delta i_2 = 1 \]
Where it fails: “min” (AND) relation

\[y = i_1 - \max(0, i_1 - i_2) \]

\[h_2 = \max(0, h_1) \]

\[h_1 = i_1 - i_2 \]

<table>
<thead>
<tr>
<th>(i_1)</th>
<th>(i_2)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i_1)</td>
<td>(i_2 < i_1)</td>
<td>(i_1 - (i_1 - i_2) = i_2)</td>
</tr>
<tr>
<td>(i_1)</td>
<td>(i_2 > i_1)</td>
<td>(i_1 - 0 = i_1)</td>
</tr>
</tbody>
</table>
Where it fails: “min” (AND) relation

\[y = i_1 - \max(0, i_1 - i_2) \]

\[h_2 = \max(0, h_1) \]

\[h_1 = i_1 - i_2 \]

\[y = i_1 - h_2 \]

\[\Delta y = 1 \]

\[\Delta h_2 = 1 \]

\[\Delta h_1 = 1 \]

\[\Delta i_2 = 1 \]

\[\Delta i_1 = 2 \]

\[\Delta y = 1 = (2 \text{ from } \Delta i_1) + (-1 \text{ from } \Delta h_2) \]

\[= (2 \text{ from } \Delta i_1) + (-1 \text{ from } \Delta h_1) \]

\[= (2 \text{ from } \Delta i_1) + (-1 \ast [(2 \text{ from } \Delta i_1) + (-1 \text{ from } \Delta i_2)]) \]

\[= (0 \text{ from } \Delta i_1) + (1 \text{ from } \Delta i_2) \]
\[\Delta y^+ = \frac{1}{2} \left(f(x^0 + \Delta x^+) - f(x^0) \right) \] (impact of \(\Delta x^+ \) after no terms added)

\[+ \frac{1}{2} \left(f(x^0 + \Delta x^- + \Delta x^+) - f(x^0 + \Delta x^-) \right) \] (impact of \(\Delta x^+ \) after negative terms added)

\[\Delta y^- = \frac{1}{2} \left(f(x^0 + \Delta x^-) - f(x^0) \right) \] (impact of \(\Delta x^- \) after no terms added)

\[+ \frac{1}{2} \left(f(x^0 + \Delta x^+ + \Delta x^-) - f(x^0 + \Delta x^+) \right) \] (impact of \(\Delta x^- \) after positive terms added)

\[m_{\Delta x^+\Delta y^+} = \frac{C_{\Delta x^+y^+}}{\Delta x^+} = \frac{\Delta y^+}{\Delta x^+} ;
\] \[m_{\Delta x^+\Delta y^-} = \frac{\Delta y^-}{\Delta x^-} \]
Solution: “min” (AND) relation

\[y = i_1 - \max(0, i_1 - i_2) \]

\[h_2 = \max(0, h_1) \]

\[h_1 = i_1 - i_2 \]

\[\Delta i_1 = 2 \]

\[\Delta y = 1 = (2 \text{ from } \Delta i_1) + (-1 \text{ from } \Delta h_2) \]

\[= (2 \text{ from } \Delta i_1) + (-1^*[(1.5 \text{ from } \Delta h_2) + (-0.5 \text{ from } \Delta h_1)]) \]

\[= (2 \text{ from } \Delta i_1) + (-1^*[(1.5 \text{ from } \Delta h_2) + (-0.5 \text{ from } \Delta h_1)]) \]

\[= (2 \text{ from } \Delta i_1) + (-1^*[(1.5 \text{ from } \Delta i_1) + (-0.5 \text{ from } \Delta i_2)]) \]

\[= (0.5 \text{ from } \Delta i_2) + (0.5 \text{ from } \Delta i_2) \]
Outline

1. Introduction
 - Motivation
 - Background
 - State-of-the-art
 - Drawbacks

2. Proposed Approach
 - DeepLIFT Method
 - Defining Reference
 - Solution
 - Multipliers and Chain Rule
 - Separating positive and negative contribution
 - Rules for assigning contributions

3. Results
 - MNIST digit classification
 - DNA sequence classification
MNIST digit classification
Outline

1 Introduction
- Motivation
- Background
- State-of-the-art
- Drawbacks

2 Proposed Approach
- DeepLIFT Method
- Defining Reference
- Solution
- Multipliers and Chain Rule
- Separating positive and negative contribution
- Rules for assigning contributions

3 Results
- MNIST digit classification
- DNA sequence classification
DNA sequence classification

(a)
- Green dots: Only TAL motifs were embedded in the full region
- Blue dots: Only GATA motifs were embedded in the full region
- Red dots: Both kinds of motifs were embedded in the full region
- Black dots: No motifs were embedded in the full region
DNA sequence classification
Summary

- Novel approach for computing importance scores based on differences from the ‘reference’.
- Using difference-from-reference allows information to propagate even when the gradient is zero.
- Separates contributions from positive and negative terms.
- Video at: https://www.youtube.com/watch?v=v8cxYjNZAXc&index=1&list=PLJLjQOkqSRTP3cLB2c00i_bQFw6KPGKML
- Slides at: https://drive.google.com/file/d/0B15FQN41VQXbkVkCTVQJTVQNE/view

Future Direction
- Applying DeepLIFT to RNNs
- Compute ‘reference’ empirically from data