Understanding Deep Learning Requires Rethinking Generalization

Chiyuan Zhang1 Samy Bengio3 Moritz Hardt3 Benjamin Recht2 Oriol Vinyals4

1Massachusetts Institute of Technology
2University of California, Berkeley
3Google Brain
4Google DeepMind

ICLR, 2017
Presenter: Arshdeep Sekhon
Generalization Error

1. Generalization error = test error − training error
2. A network that generalizes well has comparable performance on the test and training set
3. $p >> n$ in neural networks, still low generalization error
4. Question: What makes a NN with good generalization different from one that generalizes poorly?
Traditional View of generalization

1 Model Family
2 Complexity Measures:
 1 Rademacher Complexity
 2 Uniform Stability
 3 VC dimension
3 Regularization
 1 Explicit Regularization: weight decay, dropout, etc
 2 Implicit Regularization: early stopping, batch norm, etc
Experiments with the following modifications of input and labeled data:

1. original data
2. partially corrupted labels: independently with probability p, the label of each image is corrupted as a uniform random class
3. Randomize labels completely: No relationship between data and labels
4. shuffled pixels: same random permutation of pixels to all images
5. Random Pixels: different random permutation of pixels to all images
6. Gaussian: Use gaussian to generate random pixels

Ideally, should affect training procedure as there is no relationship between input and output.
Results

Figure: Randomization tests results

1. Training Error zero: fits the data perfectly/Overfitting
2. No changes in training procedure
3. More corruption slows convergence
Implications

1. **Rademacher Complexity:**

\[
E_\sigma \left[\sup_{h \in H} \frac{1}{n} \sum_{i=1}^{n} \sigma_i h(x_i) \right]
\]

(1)

where \(\sigma_1, \sigma_1, \sigma_1, \in +1, -1\) are iid random variables

Indicates how well a model in the hypothesis class fits a random assignment.
Implications

1. Rademacher Complexity:

\[
E_{\sigma}\left[\sup_{h \in H} \frac{1}{n} \sum_{i=1}^{n} \sigma_i h(x_i) \right]
\]

(1)

where \(\sigma_1, \sigma_1, \sigma_1, \in [+1, -1] \) are iid random variables
Indicates how well a model in the hypothesis class fits a random assignment.

2. Because the NNs fit the training data perfectly, \(R(H) \approx 1 \). But, this is the upper bound for Rademacher complexity. Generalization is between zero and the worst case.
Implications

1. Rademacher Complexity:

\[E_\sigma \left[\sup_{h \in H} \frac{1}{n} \sum_{i=1}^{n} \sigma_i h(x_i) \right] \]

where \(\sigma_1, \sigma_1, \sigma_1, \in +1, -1 \) are iid random variables

Indicates how well a model in the hypothesis class fits a random assignment.

2. Because the NNs fit the training data perfectly, \(R(H) \approx 1 \). But, this is the upper bound for Rademacher complexity. *Generalization is between zero and the worst case.*

3. Uniform Stability: Uniform stability of an algorithm A measures how sensitive the algorithm is to the replacement of a single example. A property of the algorithm/Has no relationship to data/distribution of labels
Key Observations:

1. Even with regularization, networks generalize fine.
2. Even with regularization, training error is still zero: fit perfectly.

Table: Training and Test Accuracy with Regularization

<table>
<thead>
<tr>
<th>Model</th>
<th># Params</th>
<th>Random Crop</th>
<th>Weight Decay</th>
<th>Train Accuracy</th>
<th>Test Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inception</td>
<td>1,649,402</td>
<td>yes</td>
<td>yes</td>
<td>100.0</td>
<td>89.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>yes</td>
<td>no</td>
<td>100.0</td>
<td>89.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no</td>
<td>yes</td>
<td>100.0</td>
<td>86.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
<td>100.0</td>
<td>85.75</td>
</tr>
<tr>
<td>(fitting random labels)</td>
<td>no</td>
<td>no</td>
<td></td>
<td>100.0</td>
<td>9.78</td>
</tr>
<tr>
<td>Inception w/o BatchNorm</td>
<td>1,649,402</td>
<td>no</td>
<td>yes</td>
<td>100.0</td>
<td>83.00</td>
</tr>
<tr>
<td>(fitting random labels)</td>
<td>no</td>
<td>no</td>
<td></td>
<td>100.0</td>
<td>82.00</td>
</tr>
<tr>
<td>Alexnet</td>
<td>1,387,786</td>
<td>yes</td>
<td>yes</td>
<td>99.90</td>
<td>81.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>yes</td>
<td>no</td>
<td>99.82</td>
<td>79.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no</td>
<td>yes</td>
<td>100.0</td>
<td>77.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
<td>100.0</td>
<td>76.07</td>
</tr>
<tr>
<td>(fitting random labels)</td>
<td>no</td>
<td>no</td>
<td></td>
<td>99.82</td>
<td>9.86</td>
</tr>
<tr>
<td>MLP 3x512</td>
<td>1,735,178</td>
<td>no</td>
<td>yes</td>
<td>100.0</td>
<td>53.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
<td>100.0</td>
<td>52.39</td>
</tr>
<tr>
<td>(fitting random labels)</td>
<td>no</td>
<td>no</td>
<td></td>
<td>100.0</td>
<td>10.48</td>
</tr>
<tr>
<td>MLP 1x512</td>
<td>1,209,866</td>
<td>no</td>
<td>yes</td>
<td>99.80</td>
<td>50.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
<td>100.0</td>
<td>50.51</td>
</tr>
<tr>
<td>(fitting random labels)</td>
<td>no</td>
<td>no</td>
<td></td>
<td>99.34</td>
<td>10.61</td>
</tr>
</tbody>
</table>

Figure: Regularization and Generalization
Implicit Regularization and Generalization

1. Early Stopping
2. Batch Normalization

Figure: Implicit Regularization

3. Continue to perform well without regularization
1. Regularization improves generalization ability.
2. Not the key reason for generalization.
Model Expressivity

1. Old/Previous View: What functions can be expressed by certain classes of neural networks?

2. Finite Sample Expressivity: Given n samples of d dimension, parameters required to express any function?
Theorem: Finite Sample Expressivity

Theorem:
There exists a two-layer neural network with ReLU activations and $2n + d$ weights that can represent any function on a sample of size n in d dimensions.

Proof:
Lemma 1:
For any interleaving sequences of n real numbers, $b_1 < x_1 < b_2 < \cdots < b_n < x_n$, the $n \times n$ matrix $A = \max[x_i - b_j, 0]$ has full rank.

Proof:
Theorem: Finite Sample Expressivity

Consider the function:

$$c(x) = \sum_{j=1}^{n} w_j \left[\max < a, x > - b_j, 0 \right]$$ \hspace{1cm} (2)

1. This can be expressed as a 2 layer ReLU network
2. $S = z_1, \ldots, z_n$
3. $x_i = < a, z_i >$
4. Choose a, b such that the interleaving property $b_1 < x_1 < b_2 < \cdots, b_n < x_n$, is satisfied.
5. Reduces to $y = Aw$
6. because A is invertible by the lemma,
7. Find suitable weights w
1. Traditional Views fail to explain generalization
2. Regularization methods are not sufficient or necessary for explaining generalization
3. Optimization is easy even if the resulting model does not generalize well