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Self Attention
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Self Attention
[7]

αij =
exp

(
xTi xj

)∑n
l=1 exp

(
xTi xl

) (1)

x l+1
i =

n∑
j=1

αijxj (2)
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Self Attention
[7]

Xl+1 = Attn(Xl ,Xl ,Xl) (3)

Attn(Q,K,V) = softmax

(
QKT

√
dk

)
V (4)

X0 = lookupTable(x) + positionEncoding(x)
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Self Attention
[7]
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Multi-Head Attention
[7]

9 / 44



Multi-Head Attention
[7]
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Restricted Neighbor Attention
[7]

I Only allow attention to k neighbors

O(Nk)
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Local Attention
[5]

O(k2)

where k is the block size and B = N
k is the number of blocks
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Block Self Attention
[6]
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Local Attention
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Memory Compressed Attention
[5]

Reduce the number of keys and values by using a strided
convolution. The number of queries remains unchanged.

O(N
N

k
)

Where N is the sequence length and k is the kernel and stride
length.
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Memory Compressed
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All Masks
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Area Attention
[4]

I Put groups of original memory keys (e.g. from individual
tokens) into “areas”
I Keys: mean of each area:
I Values: sum of each area
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All Masks
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Generating Long Sequences with Sparse Transformers
[1]
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Generating Long Sequences with Sparse Transformers
[1]
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Generating Long Sequences with Sparse Transformers
[1]

I Choosing p attention heads, set the attention width to p
√
N

I Reach full connectivity after p attention update steps

I Reduces effective computation to O(N p
√
N)
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Generating Long Sequences with Sparse Transformers
[1]
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Generating Long Sequences with Sparse Transformers
[1]

I Si denotes the set of indices of the input vectors to which the
embedding i attends

I Factorized self-attention instead has p separate attention
heads, where the mth head defines a subset of the indices
A
(m)
i ⊂ {j : j ≤ i} and lets Si = A

(m)
i where |A(m)

i | ∝ p
√
n

I For every j ≤ i pair, we set every A such that i can attend to
j through a path of locations with maximum length p + 1.
Specifically, if (j , a, b, c, ..., i) is the path of indices, then

j ∈ A
(1)
a , a ∈ A

(2)
b , b ∈ A

(3)
c and so forth
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Attention Types
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Music Transformer
[3]

Relative Attention = Softmax

(
QK> + S rel

√
Dh

)
V (5)

I S rel , an L× L dimensional logits matrix which modulates the
attention probabilities for each head.

I S rel = QR>, where R is a tensor of shape (L, L,Dh)
containing the embeddings that correspond to the relative
distances between all keys and queries.
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BERT
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Context Embeddings

I Hewitt and Manning (2017) The authors find that after a
single self attention step (before the nonlinearity) the square
of the distance between context embeddings is roughly
proportional to tree distance in the dependency parse.

I This paper seeks to answer why
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Visualizing and Measuring the Geometry of BERT
[2]

I Goal: explore BERT’s internal representations
I Investigate attention matrices
I Investigate context embeddings in relation to parse trees
I Find semantic representations of BERT embeddings
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Semantics of Attention Matrices

I Attention matrices are built on relations between pairs of
words. Do they represent grammar structure between these
pairs?

I Formulation: can an attention vector for a pair of words
classify a dependency relation?
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Semantics of Attention Matrices

I Train linear model on the model-wide attention vector for
pairs of words

I 85.8% accuracy on dependency relation prediction from Penn
Treebank

I i.e. syntactic information is encoded in attention vectors
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Context Embeddings

I After a single self attention step, the square of the distance
between context embeddings is roughly proportional to tree
distance in the dependency parse tree

I Suggests that BERT embeddings are a good alternative to
parse tree embeddings
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Context Embedding Relationships
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Distance Between Words of All Relations

I Is the actual difference between embedding distance and the
tree distance merely noise, or a more interesting pattern?

I By looking at the average embedding distances of each
dependency relation, we can see they vary
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Average Distance Between Words of all Relations

I Suggests that BERT’s syntactic representation has an
additional quantitative aspect beyond traditional dependency
grammar
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Contextual Semantics

I Does BERT actually encode contextual meaning into its
representation
I e.g. does “bark” refer to a tree or a dog
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Contextual Semantics Visualization Tool

I Input: word

I Retrieves: 1000 sentences from wikipedia containing that
word

I Outputs: clusters separating the embeddings of the input
word for each sentence
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Contextual Semantics Visualization Tool
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Quantitative Semantic Evaluation

I For a given word with n senses, create a nearest-neighbor
classifier where each neighbor is the centroid of a given word
sense’s BERT-base embeddings in the training data.

I To classify a new word we find the closest of these centroids

I State of the art F1 score of 71.1
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Concatenated Similarity Ratio

I If word sense is affected by context, then we should be able to
influence context embedding positions by systematically
varying their context

I Idea: concatenate sentences of the same word with different
semantic meanings

41 / 44



Concatenated Similarity Ratio
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