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GCN

X = g (AX'W' (1)
Time :
Space : O(LEd)

where L is the number of layers, d is the embedding dimension,
and E is the number of edges.
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Outline

Graphs
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GraphSAGE
(4]

Sample only k neighboring nodes at each layer and update those

—vv
-_— A

O @
S
1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information
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GraphSAGE
(4]
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GraphSAGE
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FastGCN
(1]

Sample only k nodes at each layer and update those
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FastGCN
(1]
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FastGCN
(1]
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Adaptive Sampling
[6]

Sample only k nodes at each layer conditioned on sampled nodes
at the previous layer
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Adaptive Sampling
[6]
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Multi-Level Framework Scalable Graph Embedding (MILE)

(8]

3-step process:

1.
2.

Repeatedly coarsen graph into smaller ones

Compute embeddings on coarsest graph using existing
embedding method

» Inexpensive and less memory than full graph
» Captures global structure

. Novel refinement model - learn graph convolution network to

refine the embeddings from the coarsest graph to the original
graph
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Multi-Level Framework Scalable Graph Embedding (MILE)
(8]

2 2
A1 = Mg:lA()MO,]_ = (2 2 0
0 0

14/ 44



Multi-Level Framework Scalable Graph Embedding (MILE)
(8]
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Multi-Level Framework Scalable Graph Embedding (MILE)
(8]

Projected Embeddings:
EP = M; i1 (7)
Refined Embeddings:

& = o(AEPW) (8)
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Hierarchical Graph Representation Learning with

Differentiable Pooling
(13]

Original Pooled network Pooled network Pooled network Graph
network atlevel 1 at level 2 atlevel 3 classification
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Matrix Factorization Methods

» LanczosNet: Multi-Scale Deep Graph Convolutional Networks
» Exploits the low rank approximation of the graph Laplacian

| 4
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Outline

Sequences
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[12]

Transformer/BERT
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Transformer/BERT

GCN:
w1 _U( Z xJ-’W’)
JEN(i)
Transformer:
X;H'l = O'(Z ozij-IWl)
J#i
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Transformer/BERT

(12]

X1 = g (a/x'W) (9)
a = Attn(X/, X!, X" (10)
T
Attn(Q, K, V') = softmax <C\?/}§Tk) % (11)

X% = lookupTable(x) + positionEncoding(x)

O(LN?d)
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Transformer/BERT

(12]

1 Scaled Dot-Product
H Attention

MatMul

Concat

Scaled Dot-Product
Attention

-~

L L 1

Linear Linear Linear
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Transformer/BERT

Attn(Q, K, V) = softmax <QKT> % (12)
U Vi

Masked Multi-Head
Attention

V K Q

~
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Local Attention
[9]
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where k is the block size and B = % is the number of blocks
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Block Self Attention
[11]

Input

Output » - Feature fusion gate
Local context
Long-term context £ | h
Context fusion -

Ell) Elds - )

Duplicate

Inter-block
self-attention

! ("Source2token ‘Source2token .. Source2token))  Share |
| _self-attention self-attention self-attention ) parameters |
P L) £} ’
] n | I T R T
. X X Ly i’ .
Intra-block ] (Masked self-attention Masked self-attention) _ _ (Masked self-attention)  Share !
self-attention 3 (L 97"+ M) 9"(, M) 97(, M) parameters|
- I * N -
1 2 e s I F e Y S

,_L _C Split into blocks
el =)

26 /44



Memory Compressed Attention
[9]

I

Masked Multi-Head
Attention

\ K|l Q
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Reduce the number of keys and values by using a strided
convolution. The number of queries remains unchanged.

O(N%d)
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Music Transformer
[5]

QKT 4 Srel
vV Dy

Relative Attention = Softmax (

) Vo (13)

» S an L x L dimensional logits matrix which modulates the
attention probabilities for each head.

» S = QRT, where R is a tensor of shape (L, L, Dj)
containing the embeddings that correspond to the relative
distances between all keys and queries.
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Generating Long Sequences with Sparse Transformers

OO0O00O0O0

O

-
Attn(Q, K, V) = softmax <(\Q/I§7> %

O(N?3d)

29 /44



Generating Long Sequences with Sparse Transformers

OO0O00O00O0

O

2d
OK*)

given p attention heads, each with a window size of k
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Generating Long Sequences with Sparse Transformers
2]

Given S = {51,...,S,} where S; denotes the set of indices of the
input vectors to which the ith output vector attends,

Attend (X, S) = (a(Xi,Si));e{L...,n}

Wyx; ) KT
a(xj, S;) = softmax <( q\/g) S‘> Vs, (14)
Ks; = (Wixj) e,
VS,- = (vaj)jES,-

Factorized self-attention instead has p separate attention heads,
where the mth head defines a subset of the indices
A (j:j < i} and lets S; = AU™ where |A"™)|  ¢/n
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Outline

Genomics
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Dilated CNNs for Long-Distance Genomic Dependencies
(3]
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Dilated CNNs for Long-Distance Genomic Dependencies

(3]

Input length:
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25,000 bp, Output labels: 919
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Hi-C
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Hi-C

Ordinary domain

Loop domain

CTCF anchor

(arrowhead indicates
motif orientation)

However, Hi-C maps are cell-line specific

Do
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Structure of the human chromosome interaction network

[10]




Structure of the human chromosome interaction network
[10]

» Intra-chromosomal contacts broadly occur between
epigenomically homologous regions

P Inter-chromosomal contacts are especially associated with
regions rich in highly expressed genes.

» GNN is a good strategy for Using HiC for genomics [7]
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Structure of the human chromosome interaction network
[10]
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Conclusion

» GNN sampling methods aren't directly transferable to
sequence methods such as Transformer

» Block transformers are still the current method for long range
dependencies
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