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GCN

Xl+1 = σ(AXlWl) (1)

Time : O(LEd2)

Space : O(LEd)

where L is the number of layers, d is the embedding dimension,
and E is the number of edges.
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GraphSAGE
[4]

Sample only k neighboring nodes at each layer and update those
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GraphSAGE
[4]
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[k] = σ(A[k]X

l
[k]W

l) (2)

O((k2)Ld)
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GraphSAGE
[4]
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FastGCN
[1]

Sample only k nodes at each layer and update those
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FastGCN
[1]

q(u) = ‖A(:, u)‖2/
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FastGCN
[1]

Xl+1
[k] = σ(A[k]X

l
[k]W

l) (5)

O(k2)
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Adaptive Sampling
[6]

Sample only k nodes at each layer conditioned on sampled nodes
at the previous layer
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Adaptive Sampling
[6]

Xl+1
[k] = σ(A[k]X

l
[k]W

l) (6)

O(k2)
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Multi-Level Framework Scalable Graph Embedding (MILE)
[8]

3-step process:

1. Repeatedly coarsen graph into smaller ones

2. Compute embeddings on coarsest graph using existing
embedding method
I Inexpensive and less memory than full graph
I Captures global structure

3. Novel refinement model - learn graph convolution network to
refine the embeddings from the coarsest graph to the original
graph
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Multi-Level Framework Scalable Graph Embedding (MILE)
[8]
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Multi-Level Framework Scalable Graph Embedding (MILE)
[8]
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Multi-Level Framework Scalable Graph Embedding (MILE)
[8]

Projected Embeddings:

Epi = Mi ,i+1Ei+1 (7)

Refined Embeddings:

Ei = σ(AiEpi W) (8)
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Hierarchical Graph Representation Learning with
Differentiable Pooling
[13]
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Matrix Factorization Methods

I LanczosNet: Multi-Scale Deep Graph Convolutional Networks
I Exploits the low rank approximation of the graph Laplacian

I
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Transformer/BERT
[12]
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Transformer/BERT

GCN:
xi
l+1 = σ

( ∑
j∈N (i)

xj
lWl
)

Transformer:
xi
l+1 = σ

(∑
j 6=i

αjxj
lWl
)
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Transformer/BERT
[12]

Xl+1 = σ(αlXlWl) (9)

α = Attn(Xl ,Xl ,Xl) (10)

Attn(Q,K ,V ) = softmax

(
QKT

√
dk

)
V (11)

X0 = lookupTable(x) + positionEncoding(x)

O(LN2d)
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Transformer/BERT
[12]
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Transformer/BERT

Attn(Q,K ,V ) = softmax

(
QKT

√
dk

)
V (12)
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Local Attention
[9]

O(k2)

where k is the block size and B = N
k is the number of blocks
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Block Self Attention
[11]
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Memory Compressed Attention
[9]

Reduce the number of keys and values by using a strided
convolution. The number of queries remains unchanged.

O(N
N

k
d)

Where N is the sequence length and k is the kernel and stride
length.
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Music Transformer
[5]

Relative Attention = Softmax

(
QK> + S rel

√
Dh

)
V (13)

I S rel , an L× L dimensional logits matrix which modulates the
attention probabilities for each head.

I S rel = QR>, where R is a tensor of shape (L, L,Dh)
containing the embeddings that correspond to the relative
distances between all keys and queries.

28 / 44



Generating Long Sequences with Sparse Transformers
[2]

Attn(Q,K ,V ) = softmax

(
QKT

√
dk

)
V

O(N2d)
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Generating Long Sequences with Sparse Transformers
[2]

O(k2
d

p
)

given p attention heads, each with a window size of k
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Generating Long Sequences with Sparse Transformers
[2]

Given S = {S1, . . . ,Sn} where Si denotes the set of indices of the
input vectors to which the ith output vector attends,

Attend (X ,S) = (a (xi , Si ))i∈{1,...,n}

a (xi , Si ) = softmax

(
(Wqxi )K

T
Si√

d

)
VSi

KSi = (Wkxj)j∈Si
VSi = (Wvxj)j∈Si

(14)

Factorized self-attention instead has p separate attention heads,
where the mth head defines a subset of the indices
A
(m)
i ⊂ {j : j ≤ i} and lets Si = A

(m)
i where |A(m)

i | ∝ p
√
n
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Dilated CNNs for Long-Distance Genomic Dependencies
[3]
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Dilated CNNs for Long-Distance Genomic Dependencies
[3]

Input length: 25,000 bp, Output labels: 919
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Hi-C
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Hi-C

However, Hi-C maps are cell-line specific
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Structure of the human chromosome interaction network
[10]
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Structure of the human chromosome interaction network
[10]

I Intra-chromosomal contacts broadly occur between
epigenomically homologous regions

I Inter-chromosomal contacts are especially associated with
regions rich in highly expressed genes.

I GNN is a good strategy for Using HiC for genomics [7]
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Structure of the human chromosome interaction network
[10]
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Conclusion

I GNN sampling methods aren’t directly transferable to
sequence methods such as Transformer

I Block transformers are still the current method for long range
dependencies
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