
Loss Functions for Deep Structured Models

Presenter: Jack Lanchantin

University of Virginia
https://qdata.github.io/deep2Read/

12/12/18

https://qdata.github.io/deep2Read/


Outline

SVM Losses

SPEN and SPEN InfNet
SPEN
SPEN InfNet

Deep Value Networks

Other

Other Loss Functions



SVM Losses



SVM Loss for Binary Classification

D = {(xi , yi )}ni=1, xi ∈ Rd , yi ∈ {0, 1}

L(w) =
1

n

n∑
i=1

max(0, 1− yi 〈w, xi 〉)

If yi = 1, 〈w, xi 〉 should be ≥ 1
If yi = −1, 〈w, xi 〉 should be ≤ −1
both of these result in 1− 1 = 0, giving an SVM loss of 0.



SVM Loss for Multi-Class Classification

D = {(xi , yi )}ni=1, xi ∈ Rd , yi ∈ {0, 1, 2, ..., c}

L(w) =
1

n

n∑
i=1

max(0, 1 + max
t 6=yi
〈wt , xi 〉 − 〈wyi , xi 〉)

This maximizes the margin between the true label yi and the next
biggest label’s prediction (maxt 6=yi ).

Alternatively, we could push down all labels which aren’t the true
label (as opposed to only the next max):

L(w) =
1

n

n∑
i=1

∑
t 6=yi

max(0, 1 + 〈wt , xi 〉 − 〈wyi , xi 〉)



Structured SVM for Multi-label Classification

D = {(xi , yi )}ni=1, xi ∈ Rd , yi ∈ {0, 1}L, where L the number of
labels. ŷ is the predicted output set, and ∆ is hamming loss

L(w) =
1

n

n∑
i=1

max(0,max
ŷ

(∆(y, ŷ) + 〈w, φ(xi , ŷ)〉)− 〈w, φ(xi , y)〉)

Finding this maxŷ is typically intractable, but gradient descend can
be used to approximate.



SPEN and SPEN InfNet



SVM Losses

SPEN and SPEN InfNet
SPEN
SPEN InfNet

Deep Value Networks

Other

Other Loss Functions



Energy Models

Instead of maximizing the score of 〈w, φ(xi , ŷ)〉, we can instead
minimize the energy of the joint pair (x , y)

min
y

E(x, y) subject to y ∈ {0, 1}L

This could be rendered tractable by assuming certain structure
(e.g., a tree) for the energy function E(x, y). Instead, we consider
a general E(x, y), but optimize over a convex relaxation of the
constraint set

min
y

E(x, y) subject to y ∈ [0, 1]L



Structured Prediction Energy Networks (SPEN)

The energy of a pair (x, y) is represented as:

E(x, y) = E(x, y)local + E(x, y)label

E(x, y)local =
L∑

i=1

yib
>
i F (x)

E(x, y)label = c>2 σ(C1y)



Structured Prediction Energy Networks (SPEN)

If we were to use the CRF framework in SPENs, the label, or
global energy network would be

E(x, y)label = y>S1y + s>y

which doesn’t use the [0, 1]L relaxation on y and only considers
pairwise dependencies as opposed to the C1 matrix in the original
label network, which allows for any learned dependencies.



Structured Prediction Energy Networks (SPEN)

SPENs minimize the following SSVM Loss, where [·]+ represents
max(0, ·)

L =
1

n

n∑
i=1

[
max

ŷ
(∆(yi , ŷ)− E(xi , ŷ) + E(xi , yi ))

]
+

During training, the max
ŷ

is found by cost-augmented inference,

where P projects values into [0,1]:

yt+1 = P
(

yt − η d

dy
(−∆(yi , y

t) + E(x, yt))
)

(1)



Structured Prediction Energy Networks (SPEN)

At test time, given xi , ŷ is found by minimizing the energy E(xi , ŷ).
This is done via gradient descent:

yt+1 = P
(

yt − η d

dy
E(x, yt))

)



SPEN Model



SVM Losses

SPEN and SPEN InfNet
SPEN
SPEN InfNet

Deep Value Networks

Other

Other Loss Functions



Learning Approximate Inference Networks for Structured
Prediction (SPEN InfNet)

Instead of using (13), learn an inference network GΨ with the goal
that

GΨ(x) ≈ arg min
ŷ

E (x, ŷ)

Given energy function E , we seek to minimize the following:

arg min
Ψ

E (x,GΨ(x))



Learning Approximate Inference Networks for Structured
Prediction (SPEN InfNet)

Training InfNet requires two steps: InfNet turns the loss into a
minimax problem to learn a cost augmented inference network GΦ

min
Θ

max
Φ

1

n

n∑
i=1

[
∆(yi ,GΦ(xi ))− EΘ(xi ,GΦ(xi )) + EΘ(xi , yi )

]
+

Θ̂← arg min
Θ

[
∆(yi ,GΦ(xi ))− EΘ(xi ,GΦ(xi )) + EΘ(xi , yi )

]
+

Φ̂← arg min
Φ

[
−∆(yi ,GΦ(xi )) + EΘ(xi ,GΦ(xi ))− EΘ(xi , yi )

]
+



Learning Approximate Inference Networks for Structured
Prediction (SPEN InfNet)

Training only gives us a cost-augmented inference network GΦ, but
we want inference network GΨ. So we initialize GΨ with GΦ and
minimize the original Energy:

arg min
Ψ

E (x,GΨ(x))



Deep Value Networks



Deep Value Networks

Train a value function v(x, ŷ; θ) that approximates an oracle
function v∗ (dependent on task):

v(x, ŷ; θ) ≈ v∗(y, ŷ)

For MLC,

v∗(y, ŷ) = vF1(y, ŷ) =
2(y ∩ ŷ)

(y ∩ ŷ) + (y ∪ ŷ)

At inference time, ŷ is found by initializing to 0 vector ŷ0 = [0]L

and then updating via gradient ascent on v(x, ŷt ; θ)

ŷt+1 = P
(
ŷt + η

d

dŷ
v(x, ŷt ; θ)

)



Deep Value Networks

Our training objective aims at minimizing the discrepancy between
v(x, ŷ; θ) and v∗(y, ŷ) on a training set of triplets (input, output,
value) denoted D = {xi , yi , v∗i}Ni=1

This can be done using binary cross entropy between v(x, ŷ; θ) and
v∗(y, ŷ):

L =
n∑

i=1

−v∗(yi , ŷ) log(v(xi , ŷ; θ))−(1−v∗(yi , ŷ)) log(1−v(xi , ŷ; θ))



Deep Value Networks

Choosing ŷ can be done in several ways:

I Ground Truth: ŷ = yi and v ∗ (ŷ, yi ) = 1

I Inference: Gradient ascent on the current v∗

I Adversarial Samples: Maximize the cross entropy loss using
gradient ascent



Other



Adversarial Training for Segmentation

Θ̂← arg min
Θ

(
`BCE (D(xi ,GΦ(xi ), 0) + `BCED(xi , yi ), 1)

)
Φ̂← arg min

Φ

(
− `BCE (D(xi ,GΦ(xi ), 0) + `avgBCE (y,GΦ(xi ))

)



Other Loss Functions



N samples, L labels. True label y ij and predicted label ŷ ij for
sample i and label j .

BCE

LBCE =
N∑
i=1

L∑
j=1

−
(
y ij log ŷ ij + (1− y ij ) log(1− ŷ ij )

)
(2)

L2

LL2 =
N∑
i=1

L∑
j=1

(y ij − ŷ ij )2 (3)

KL

LKL =
N∑
i=1

L∑
j=1

y ij log

(
y ij

ŷ ij

)
(4)


	SVM Losses
	SPEN and SPEN InfNet
	SPEN
	SPEN InfNet

	Deep Value Networks
	Other
	Other Loss Functions

