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Sparsification



Intro

Approximate any graph with a sparse graph:

Graph Approximation




e Compression
e Faster to compute with

e Less memory



Graph Approximation

Given: G =(V,E,w) and H=(V, F,z), we want:

Properties we want to preserve:

o Cut sizes
e Communities/clusters

e Behavior of random walks



Cut Approximation

e H =, G if for every S C V, the sum of weights leaving S is the
same in H and G

Approximation




Cut Approximation Theorem [2]

Given a graph G with m edges and error parameter ¢, we can find a
graph H such that:

e H has O(nlogn/e?) edges

e The value of every cut in H is (1 & €) the corresponding cut in G

e H can be constructed in O(mlog? n) time if G is unweighted and
O(mlog® n) if G is weighted



Stronger Approximation: Spectral Sparsification

H =,. G if for some error parameter x:
H<G<krH
Where H< G ifVx: V — R:

x" Lyx < x" Lex



The Graph Laplacian



The V Operator
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e A pseudo-vector: V = [8%



The V Operator

e A pseudo-vector: V = [8%17 a%y s 81]
e Gradient: Vf = [ax17 B gxf



The V Operator

e A pseudo-vector: V = [%7 8%2’ " 82,,]
e Gradient: Vf = [ax17 Sy o gxfn
« Divergence: V- = V. [f . v F 964 06 | 4 06



The V Operator

e A pseudo-vector: V = [ax17 822 oog 81]
e Gradient: Vf = [ax17 AR gxi
e Divergence: V-f =V [f1, foy ey fo] = % + % tot %{:

Laplacian: V - Vf = V3f = g—ig + % +..+ %



Physics Explanation

e Let V :R3 — R be the electric potential
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Physics Explanation

e Let V :R3 — R be the electric potential
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Physics Explanation

Let V : R3 — R be the electric potential

e E=-VV :R3 — R3is the electric field
div(E) = V- E : R® — R is divergence of E
Laplacian(V) = div(E) = V - VV = V2V




Interpreting the Laplacian

e Laplacian(V) = div(E)=V-E=V -VV = V2V
e Extent to which a point behaves like a positive voltage source
e Net flux density through a volume at a point

e Second derivative of V: smoothness of V' over space

10



What is the Graph Laplacian?

How do we define V - Vf = V2f for graphs? Three questions:

1. What does f mean for graphs?
2. What does the gradient Vf mean for graphs?
3. What does the Laplacian V - V{ mean for graphs?
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1. Functions Over Graphs

e f: VR
e For example: the degree of each node
e In other words: degree of a node is like its potential

Graph 7 Vertex Function
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2. Gradient of Degree Function

e Need an analog to V = [ 2, a%’ 2

e Incidence matrix K: each node gets a row and each edge gets a
column

o If outgoing edge, K, . = —1
o If incoming edge, K, =1

e Neither: K, =0
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Incidence Matrix K
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Gradient of Degree Function
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3. Laplacian Operator for Graphs

L=D-A (4)

(where D is the degree matrix and A is the adjacency matrix)
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Graph Divergence
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Divergence and Smoothness

Graph

Vi =KK'f=Lf=|8 (6)
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Divergence and Smoothness
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Physics Graphs
Potential: V Vertex function: f
v K: incidence matrix
VV: field KT f: graph gradient
V?: Laplacian KKT Graph Laplacian

V2V: Laplacian of V' KK f: Graph Laplacian of f
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Back to Sparsification




Stronger Approximation: Spectral Sparsification

H =, G if for some error parameter k:
H=<G<xkrH
Where H< G ifVx: V — R:

x" Lyx < x" Lex
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Laplacian Quadratic Form

Sum of square differences across the edges:

Tlex= 3 w(w,v)(x() —x(v))?
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Spectral Approximation Theorem [1]

Given G and error parameter ¢, we can find an approximation H such
that:

e HX G
e H has O(nlog n/e?) edges
e H can be found in time O(m/e?)
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Why is spectral approx. stronger than cut approx.?

e A spectral approximation is also a cut approximation

e The converse is not always true
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Why is it better?

e H will inherit a bunch of properties of G

The eigenvectors and eigenvalues will be similar

Can use H to obtain approximate solutions to linear systems of G

If x € R", we can use convex solvers

If x € {0,1}", we can relax it to x € R” to obtain approximate
solutions
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How to Obtain H




Basic ldea: Random Sampling

e Choose edge e with probability pe
e Take k independent samples
e Add e to H with weight 1/kp.
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Why not Uniform Sampling?

Don't want to disconnect the graph. E.g.,:

Yo Yo

Instead: bias probabilities based on the “effective resistance” of the edges
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Sparsification using Effective
Resistance




Resistor Networks
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Ohm'’s law: voltage drop across a resistor is
V=IR
Power dissipation across a resistor:

P=V?/R
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Quadratic Form and Power Dissipation

e If we interpret x as voltages and E as conductances, then
XTLgx

gives the power dissipation of the graph.

o If H~, G, then H and G have approximate “electrical equivalence.”
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Effective Resistance

Refr(€): power dissipation when a unit of current is sent across the ends

A— NWN——— VWA —a—WW\,

R1 R4 R7
e © o)
n'd x CK§
R5 R9
Bo— \WW————AWN————AMN,
of e R2

Rerr(€) = ||Lg"/*be|| = b] Lg"be

where b, € 1,—1,0", bo(u) =1, be(v) = —1, 0 everywhere else
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Sparsification with Effective Resistance [3]

e Choose edge e with probability p. o Res(e)
e Take k independent samples
e Add e to H with weight 1/kpe
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