Spectral Graph Sparsification

Presenter: Derrick Blakely
June 28, 2019
University of Virginia
https://qdata.github.io/deep2Read/

Table of contents

1. Sparsification
2. The Graph Laplacian
3. Back to Sparsification
4. How to Obtain H
5. Sparsification using Effective Resistance

Sparsification

Intro

Approximate any graph with a sparse graph:

Approximation

Why?

- Compression
- Faster to compute with
- Less memory

Graph Approximation

Given: $G=(V, E, w)$ and $H=(V, F, z)$, we want:

$$
H \approx_{\epsilon} G
$$

Properties we want to preserve:

- Cut sizes
- Communities/clusters
- Behavior of random walks

Cut Approximation

- $H \approx_{\epsilon} G$ if for every $S \subset V$, the sum of weights leaving S is the same in H and G

Cut Approximation Theorem [2]

Given a graph G with m edges and error parameter ϵ, we can find a graph H such that:

- H has $O\left(n \log n / \epsilon^{2}\right)$ edges
- The value of every cut in H is $(1 \pm \epsilon)$ the corresponding cut in G
- H can be constructed in $O\left(m \log ^{2} n\right)$ time if G is unweighted and $O\left(m \log ^{3} n\right)$ if G is weighted

Stronger Approximation: Spectral Sparsification

$H \approx_{\kappa} G$ if for some error parameter κ :

$$
H \preccurlyeq G \preccurlyeq \kappa H
$$

Where $H \preccurlyeq G$ if $\forall x: V \rightarrow \mathbb{R}$:

$$
x^{\top} L_{H} x \leq x^{\top} L_{G} x
$$

The Graph Laplacian

The ∇ Operator

- A pseudo-vector: $\nabla=\left[\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right]$

The ∇ Operator

- A pseudo-vector: $\nabla=\left[\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right]$
- Gradient: $\nabla f=\left[\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right]$

The ∇ Operator

- A pseudo-vector: $\nabla=\left[\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right]$
- Gradient: $\nabla f=\left[\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right]$
- Divergence: $\nabla \cdot f=\nabla \cdot\left[f_{1}, f_{2}, \ldots, f_{n}\right]=\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}+\ldots+\frac{\partial f_{n}}{\partial x_{n}}$

The ∇ Operator

- A pseudo-vector: $\nabla=\left[\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right]$
- Gradient: $\nabla f=\left[\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right]$
- Divergence: $\nabla \cdot f=\nabla \cdot\left[f_{1}, f_{2}, \ldots, f_{n}\right]=\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}+\ldots+\frac{\partial f_{n}}{\partial x_{n}}$
- Laplacian: $\nabla \cdot \nabla f=\nabla^{2} f=\frac{\partial^{2} f}{\partial x_{1}^{2}}+\frac{\partial^{2} f}{\partial x_{2}^{2}}+\ldots+\frac{\partial^{2} f}{\partial x_{n}^{2}}$

Physics Explanation

- Let $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the electric potential

Physics Explanation

- Let $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the electric potential
- $E=-\nabla V: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is the electric field

Physics Explanation

－Let $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the electric potential
－$E=-\nabla V: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is the electric field
－ $\operatorname{div}(E)=\nabla \cdot E: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is divergence of E

11才フ－\11
\11ハーマ 11
1

Physics Explanation

－Let $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the electric potential
－$E=-\nabla V: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is the electric field
－ $\operatorname{div}(E)=\nabla \cdot E: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is divergence of E
－Laplacian $(V)=\operatorname{div}(E)=\nabla \cdot \nabla V=\nabla^{2} V$

11メーさ 11
$11 /$
t

Interpreting the Laplacian

- Laplacian $(V)=\operatorname{div}(E)=\nabla \cdot E=\nabla \cdot \nabla V=\nabla^{2} V$
- Extent to which a point behaves like a positive voltage source
- Net flux density through a volume at a point
- Second derivative of V : smoothness of V over space

11ヶ- \11
11入- - 1

What is the Graph Laplacian?

How do we define $\nabla \cdot \nabla f=\nabla^{2} f$ for graphs? Three questions:

1. What does f mean for graphs?
2. What does the gradient ∇f mean for graphs?
3. What does the Laplacian $\nabla \cdot \nabla f$ mean for graphs?

1. Functions Over Graphs

- $f: V \rightarrow \mathbb{R}$
- For example: the degree of each node
- In other words: degree of a node is like its potential

2. Gradient of Degree Function

- Need an analog to $\nabla=\left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right]$
- Incidence matrix K : each node gets a row and each edge gets a column
- If outgoing edge, $K_{n, e}=-1$
- If incoming edge, $K_{n, e}=1$
- Neither: $K_{n, e}=0$

Incidence Matrix K

Gradient of Degree Function

$$
\nabla f=K^{\top} f=K^{\top}\left[\begin{array}{l}
2 \tag{2}\\
2 \\
4 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
2 \\
2 \\
-3 \\
-3
\end{array}\right]
$$

3. Laplacian Operator for Graphs

$$
\begin{align*}
\nabla \cdot \nabla=K K^{\top}=L & =\left[\begin{array}{ccccc}
2 & -1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
-1 & -1 & 4 & -1 & -1 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & -1 & 0 & 1
\end{array}\right] \tag{3}\\
L & =D-A \tag{4}
\end{align*}
$$

(where D is the degree matrix and A is the adjacency matrix)

Graph Divergence

Divergence and Smoothness

$$
\nabla^{2} f=K K^{\top} f=L f=\left[\begin{array}{c}
-2 \tag{6}\\
-2 \\
8 \\
-2 \\
-2
\end{array}\right]
$$

Divergence and Smoothness

$$
\nabla^{2} f=K K^{\top} f=L f=\left[\begin{array}{c}
-1 \tag{7}\\
-1 \\
4 \\
-1 \\
-1
\end{array}\right]
$$

Summary

Physics	Graphs
Potential: V	Vertex function: f
∇	$K:$ incidence matrix
$\nabla V:$ field	$K^{\top} f:$ graph gradient
$\nabla^{2}:$ Laplacian	$K K^{\top}$ Graph Laplacian
$\nabla^{2} V:$ Laplacian of V	$K K^{\top} f: G r a p h$ Laplacian of f

Back to Sparsification

Stronger Approximation: Spectral Sparsification

$H \approx_{\epsilon} G$ if for some error parameter κ :

$$
H \preccurlyeq G \preccurlyeq \kappa H
$$

Where $H \preccurlyeq G$ if $\forall x: V \rightarrow \mathbb{R}$:

$$
x^{\top} L_{H} x \leq x^{\top} L_{G} x
$$

Laplacian Quadratic Form

Sum of square differences across the edges:

$$
x^{\top} L_{G} x=\sum_{(u, v) \in E} w(u, v)(x(u)-x(v))^{2}
$$

Spectral Approximation Theorem [1]

Given G and error parameter ϵ, we can find an approximation H such that:

- $H \preccurlyeq G$
- H has $O\left(n \log n / \epsilon^{2}\right)$ edges
- H can be found in time $\tilde{O}\left(m / \epsilon^{2}\right)$

Why is spectral approx. stronger than cut approx.?

- A spectral approximation is also a cut approximation
- The converse is not always true

Why is it better?

- H will inherit a bunch of properties of G
- The eigenvectors and eigenvalues will be similar
- Can use H to obtain approximate solutions to linear systems of G
- If $x \in \mathbb{R}^{n}$, we can use convex solvers
- If $x \in\{0,1\}^{n}$, we can relax it to $x \in \mathbb{R}^{n}$ to obtain approximate solutions

How to Obtain H

Basic Idea: Random Sampling

- Choose edge e with probability p_{e}
- Take k independent samples
- Add e to H with weight $1 / k p_{e}$

Why not Uniform Sampling?

Don't want to disconnect the graph. E.g.,:

Instead: bias probabilities based on the "effective resistance" of the edges

Sparsification using Effective Resistance

Resistor Networks

Circuit Basics

Ohm's law: voltage drop across a resistor is

$$
V=I R
$$

Power dissipation across a resistor:

$$
P=V^{2} / R
$$

Quadratic Form and Power Dissipation

- If we interpret x as voltages and E as conductances, then

$$
x^{\top} L_{G} x
$$

gives the power dissipation of the graph.

- If $H \approx_{\kappa} G$, then H and G have approximate "electrical equivalence."

Effective Resistance

$R_{\text {eff }}(e)$: power dissipation when a unit of current is sent across the ends

$$
R_{\text {eff }}(e)=\left\|L_{G}^{-1 / 2} b_{e}\right\|=b_{e}^{\top} L_{G}^{-1} b_{e}
$$

where $b_{e} \in 1,-1,0^{n}, b_{e}(u)=1, b_{e}(v)=-1,0$ everywhere else

Sparsification with Effective Resistance [3]

- Choose edge e with probability $p_{e} \propto R_{\text {eff }}(e)$
- Take k independent samples
- Add e to H with weight $1 / k p_{e}$

References

\square J. Batson, D. A. Spielman, N. Srivastava, and S.-H. Teng.

Spectral sparsification of graphs: theory and algorithms.
Communications of the ACM, 56(8):87-94, 2013.
(A. Benczur and D. R. Karger.
Randomized approximation schemes for cuts and flows in capacitated graphs.
arXiv preprint cs/0207078, 2002.
戋 D. A. Spielman and N. Srivastava.
Graph sparsification by effective resistances.
SIAM Journal on Computing, 40(6):1913-1926, 2011.

