Spectral Graph Sparsification

Presenter: Derrick Blakely

June 28, 2019

University of Virginia

https://qdata.github.io/deep2Read/

- 1. Sparsification
- 2. The Graph Laplacian
- 3. Back to Sparsification
- 4. How to Obtain H
- 5. Sparsification using Effective Resistance

Sparsification

Approximate any graph with a sparse graph:

- Compression
- Faster to compute with
- Less memory

Given:
$$G = (V, E, w)$$
 and $H = (V, F, z)$, we want:

 $H \approx_{\epsilon} G$

Properties we want to preserve:

- Cut sizes
- Communities/clusters
- Behavior of random walks

Cut Approximation

H ≈_ε G if for every S ⊂ V, the sum of weights leaving S is the same in H and G

Given a graph G with m edges and error parameter ϵ , we can find a graph H such that:

- *H* has $O(n \log n/\epsilon^2)$ edges
- The value of every cut in H is $(1\pm\epsilon)$ the corresponding cut in G
- H can be constructed in O(m log² n) time if G is unweighted and O(m log³ n) if G is weighted

 $H \approx_{\kappa} G$ if for some error parameter κ :

 $H \preccurlyeq G \preccurlyeq \kappa H$

Where $H \preccurlyeq G$ if $\forall x : V \rightarrow \mathbb{R}$:

 $x^{\top}L_{H}x \leq x^{\top}L_{G}x$

The Graph Laplacian

• A pseudo-vector: $\nabla = [\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, ..., \frac{\partial}{\partial x_n}]$

• A pseudo-vector: $\nabla = [\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, ..., \frac{\partial}{\partial x_n}]$

• Gradient:
$$\nabla f = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n}\right]$$

- A pseudo-vector: $\nabla = [\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, ..., \frac{\partial}{\partial x_n}]$
- Gradient: $\nabla f = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n}\right]$
- Divergence: $\nabla \cdot f = \nabla \cdot [f_1, f_2, ..., f_n] = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + ... + \frac{\partial f_n}{\partial x_n}$

• A pseudo-vector: $\nabla = [\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, ..., \frac{\partial}{\partial x_n}]$

• Gradient:
$$\nabla f = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n}\right]$$

- Divergence: $\nabla \cdot f = \nabla \cdot [f_1, f_2, ..., f_n] = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + ... + \frac{\partial f_n}{\partial x_n}$
- Laplacian: $\nabla \cdot \nabla f = \nabla^2 f = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \dots + \frac{\partial^2 f}{\partial x_n^2}$

• Let $V: \mathbb{R}^3 \to \mathbb{R}$ be the electric potential

- Let $V: \mathbb{R}^3 \to \mathbb{R}$ be the electric potential
- $E = -\nabla V : \mathbb{R}^3 \to \mathbb{R}^3$ is the electric field

- Let $V: \mathbb{R}^3
 ightarrow \mathbb{R}$ be the electric potential
- $E = -\nabla V : \mathbb{R}^3 \to \mathbb{R}^3$ is the electric field
- $div(E) = \nabla \cdot E : \mathbb{R}^3 \to \mathbb{R}$ is divergence of E

- Let $V: \mathbb{R}^3
 ightarrow \mathbb{R}$ be the electric potential
- $E = -\nabla V : \mathbb{R}^3 \to \mathbb{R}^3$ is the electric field
- $div(E) = \nabla \cdot E : \mathbb{R}^3 \to \mathbb{R}$ is divergence of E
- Laplacian(V) = div(E) = $\nabla \cdot \nabla V = \nabla^2 V$

Interpreting the Laplacian

- Laplacian(V) = div(E) = $\nabla \cdot E = \nabla \cdot \nabla V = \nabla^2 V$
- Extent to which a point behaves like a positive voltage source
- Net flux density through a volume at a point
- Second derivative of V: smoothness of V over space

How do we define $\nabla \cdot \nabla f = \nabla^2 f$ for graphs? Three questions:

- 1. What does *f* mean for graphs?
- 2. What does the gradient ∇f mean for graphs?
- 3. What does the Laplacian $\nabla \cdot \nabla f$ mean for graphs?

1. Functions Over Graphs

- $f: V \to \mathbb{R}$
- For example: the degree of each node
- In other words: degree of a node is like its potential

- Need an analog to $\nabla = \left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right]$
- Incidence matrix K: each node gets a row and each edge gets a column
- If outgoing edge, $K_{n,e} = -1$
- If incoming edge, $K_{n,e} = 1$
- Neither: $K_{n,e} = 0$

Incidence Matrix K

(1)

Gradient of Degree Function

(2)

$$\nabla \cdot \nabla = KK^{\top} = L = \begin{bmatrix} 2 & -1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ -1 & -1 & 4 & -1 & -1 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1 \end{bmatrix}$$
(3)
$$L = D - A$$
(4)

(where D is the degree matrix and A is the adjacency matrix)

Graph Divergence

(5)

Divergence and Smoothness

(6)

Divergence and Smoothness

(7)

Physics	Graphs
Potential: V	Vertex function: f
∇	K: incidence matrix
∇V : field	$K^{ op}f$: graph gradient
$ abla^2$: Laplacian	$KK^ op$ Graph Laplacian
$ abla^2 V$: Laplacian of V	$KK^{\top}f$: Graph Laplacian of f

Back to Sparsification

 $H \approx_{\epsilon} G$ if for some error parameter κ :

 $H \preccurlyeq G \preccurlyeq \kappa H$

Where $H \preccurlyeq G$ if $\forall x : V \rightarrow \mathbb{R}$:

 $x^{\top}L_{H}x \leq x^{\top}L_{G}x$

Sum of square differences across the edges:

$$x^{\top}L_G x = \sum_{(u,v)\in E} w(u,v)(x(u)-x(v))^2$$

Given G and error parameter $\epsilon,$ we can find an approximation H such that:

- $H \preccurlyeq G$
- *H* has $O(n \log n/\epsilon^2)$ edges
- *H* can be found in time $ilde{O}(m/\epsilon^2)$

- A spectral approximation is also a cut approximation
- The converse is not always true

- H will inherit a bunch of properties of G
- The eigenvectors and eigenvalues will be similar
- Can use H to obtain approximate solutions to linear systems of G
- If $x \in \mathbb{R}^n$, we can use convex solvers
- If x ∈ {0,1}ⁿ, we can relax it to x ∈ ℝⁿ to obtain approximate solutions

How to Obtain H

- Choose edge e with probability p_e
- Take k independent samples
- Add e to H with weight $1/kp_e$

Don't want to disconnect the graph. E.g.,:

Instead: bias probabilities based on the "effective resistance" of the edges

Sparsification using Effective Resistance

Ohm's law: voltage drop across a resistor is

V = IR

Power dissipation across a resistor:

$$P = V^2/R$$

• If we interpret x as voltages and E as conductances, then

$x^{\top}L_G x$

gives the power dissipation of the graph.

• If $H \approx_{\kappa} G$, then H and G have approximate "electrical equivalence."

 $R_{eff}(e)$: power dissipation when a unit of current is sent across the ends ∽₩₩∽ R4 **R**5 **R**9 BC **R**2 of e $R_{eff}(e) = ||L_{c}^{-1/2}b_{e}|| = b_{c}^{\top}L_{c}^{-1}b_{e}$ where $b_e \in 1, -1, 0^n$, $b_e(u) = 1$, $b_e(v) = -1$, 0 everywhere else

- Choose edge e with probability $p_e \propto R_{eff}(e)$
- Take k independent samples
- Add e to H with weight $1/kp_e$

- J. Batson, D. A. Spielman, N. Srivastava, and S.-H. Teng. Spectral sparsification of graphs: theory and algorithms. *Communications of the ACM*, 56(8):87–94, 2013.
- A. Benczur and D. R. Karger.
 Randomized approximation schemes for cuts and flows in capacitated graphs.

arXiv preprint cs/0207078, 2002.

D. A. Spielman and N. Srivastava. **Graph sparsification by effective resistances.** *SIAM Journal on Computing*, 40(6):1913–1926, 2011.