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Sparsification



Intro

Approximate any graph with a sparse graph:

Graph Approximation
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Why?

• Compression

• Faster to compute with

• Less memory
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Graph Approximation

Given: G = (V ,E ,w) and H = (V ,F , z), we want:

H ≈ε G

Properties we want to preserve:

• Cut sizes

• Communities/clusters

• Behavior of random walks
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Cut Approximation

• H ≈ε G if for every S ⊂ V , the sum of weights leaving S is the

same in H and G
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Cut Approximation Theorem [2]

Given a graph G with m edges and error parameter ε, we can find a

graph H such that:

• H has O(n log n/ε2) edges

• The value of every cut in H is (1± ε) the corresponding cut in G

• H can be constructed in O(m log2 n) time if G is unweighted and

O(m log3 n) if G is weighted
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Stronger Approximation: Spectral Sparsification

H ≈κ G if for some error parameter κ:

H 4 G 4 κH

Where H 4 G if ∀x : V → R:

x>LHx ≤ x>LGx
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The Graph Laplacian



The ∇ Operator

• A pseudo-vector: ∇ = [ ∂
∂x1
, ∂
∂x2
, ..., ∂

∂xn
]

• Gradient: ∇f = [ ∂f
∂x1
, ∂f
∂x2
, ..., ∂f

∂xn
]

• Divergence: ∇ · f = ∇ · [f1, f2, ..., fn] = ∂f1
∂x1

+ ∂f2
∂x2

+ ...+ ∂fn

∂xn

• Laplacian: ∇ · ∇f = ∇2f = ∂2f
∂x2

1
+ ∂2f

∂x2
2

+ ...+ ∂2f
∂x2

n
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Physics Explanation

• Let V : R3 → R be the electric potential

• E = −∇V : R3 → R3 is the electric field

• div(E ) = ∇ · E : R3 → R is divergence of E

• Laplacian(V ) = div(E ) = ∇ · ∇V = ∇2V
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Interpreting the Laplacian

• Laplacian(V ) = div(E ) = ∇ · E = ∇ · ∇V = ∇2V

• Extent to which a point behaves like a positive voltage source

• Net flux density through a volume at a point

• Second derivative of V : smoothness of V over space
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What is the Graph Laplacian?

How do we define ∇ · ∇f = ∇2f for graphs? Three questions:

1. What does f mean for graphs?

2. What does the gradient ∇f mean for graphs?

3. What does the Laplacian ∇ · ∇f mean for graphs?
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1. Functions Over Graphs

• f : V → R
• For example: the degree of each node

• In other words: degree of a node is like its potential

Graph
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Vertex Function
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2. Gradient of Degree Function

• Need an analog to ∇ = [ ∂∂x ,
∂
∂y ,

∂
∂z ]

• Incidence matrix K : each node gets a row and each edge gets a

column

• If outgoing edge, Kn,e = −1

• If incoming edge, Kn,e = 1

• Neither: Kn,e = 0
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Incidence Matrix K
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Gradient of Degree Function
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3. Laplacian Operator for Graphs

∇ · ∇ = KK> = L =


2 −1 −1 0 0

−1 2 −1 0 0

−1 −1 4 −1 −1

0 0 −1 1 0

0 0 −1 0 1

 (3)

L = D − A (4)

(where D is the degree matrix and A is the adjacency matrix)
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Graph Divergence
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Divergence and Smoothness

Graph

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

∇2f = KK>f = Lf =


−2

−2

8

−2

−2

 (6)

18



Divergence and Smoothness
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Summary

Physics Graphs

Potential: V Vertex function: f

∇ K : incidence matrix

∇V : field K>f : graph gradient

∇2: Laplacian KK> Graph Laplacian

∇2V : Laplacian of V KK>f : Graph Laplacian of f
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Back to Sparsification



Stronger Approximation: Spectral Sparsification

H ≈ε G if for some error parameter κ:

H 4 G 4 κH

Where H 4 G if ∀x : V → R:

x>LHx ≤ x>LGx
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Laplacian Quadratic Form

Sum of square differences across the edges:

x>LGx =
∑

(u,v)∈E

w(u, v)(x(u)− x(v))2

22



Spectral Approximation Theorem [1]

Given G and error parameter ε, we can find an approximation H such

that:

• H 4 G

• H has O(n log n/ε2) edges

• H can be found in time Õ(m/ε2)
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Why is spectral approx. stronger than cut approx.?

• A spectral approximation is also a cut approximation

• The converse is not always true
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Why is it better?

• H will inherit a bunch of properties of G

• The eigenvectors and eigenvalues will be similar

• Can use H to obtain approximate solutions to linear systems of G

• If x ∈ Rn, we can use convex solvers

• If x ∈ {0, 1}n, we can relax it to x ∈ Rn to obtain approximate

solutions
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How to Obtain H



Basic Idea: Random Sampling

• Choose edge e with probability pe

• Take k independent samples

• Add e to H with weight 1/kpe
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Why not Uniform Sampling?

Don’t want to disconnect the graph. E.g.,:

Instead: bias probabilities based on the “effective resistance” of the edges
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Sparsification using Effective

Resistance



Resistor Networks
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Circuit Basics

Ohm’s law: voltage drop across a resistor is

V = IR

Power dissipation across a resistor:

P = V 2/R
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Quadratic Form and Power Dissipation

• If we interpret x as voltages and E as conductances, then

x>LGx

gives the power dissipation of the graph.

• If H ≈κ G , then H and G have approximate “electrical equivalence.”
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Effective Resistance

Reff (e): power dissipation when a unit of current is sent across the ends

of e

Reff (e) = ||L−1/2G be || = b>e L−1G be

where be ∈ 1,−1, 0n, be(u) = 1, be(v) = −1, 0 everywhere else
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Sparsification with Effective Resistance [3]

• Choose edge e with probability pe ∝ Reff (e)

• Take k independent samples

• Add e to H with weight 1/kpe
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