Deep Learning and Information Theory, and Graph Neural Network

June 2019

Presenter: Derrick Blakely

University of Virginia
https://qdata.github.io/deep2Read/

Table of contents

1. Information Theory Basics
2. Information Bottleneck Theory
3. Information Theory and the Spectral Domain

Information Theory Basics

Information Content

Information content $=$ the amount you learn from an event E :

$$
I(E)=-\log (\operatorname{Pr}(E))=\log \left(\frac{1}{\operatorname{Pr}(E)}\right)
$$

- Suppose you know $\operatorname{Pr}(E)=1$
- You don't learn anything when you're told E occurs
- $\Longrightarrow I(E)=0$
- Basic intuition: you learn more from surprising (i.e., unlikely) events (hence information content is also called "surprisal")

Weather Example

여요

If it's sunny:

- Reduction in uncertainty $=1 / 0.75=1.333$
- $I(S)=\log (1.333)=0.41$

If it's raining:

- Reduction in uncertainty $=1 / 0.25=4$
- $I(R)=\log (4)=2$

Entropy

Entropy $=$ expected amount of information:

$$
H(X)=-\sum_{x} \operatorname{Pr}(x) \log (\operatorname{Pr}(x))
$$

"Amount of uncertainty about a random variable X " "Virginia weather is unpredictable" $=$ "Virginia weather has high entropy"

Important Entropy Measures

- Joint entropy: $H(X, Y)=-\sum_{x, y} \operatorname{Pr}(x, y) \log (\operatorname{Pr}(x, y))$
- Conditional entropy: $H(Y \mid X)=-\sum_{x, y} \operatorname{Pr}(x, y) \log \left(\frac{\operatorname{Pr}(x, y)}{\operatorname{Pr}(x)}\right)$
- If X and Y are independent: $H(Y \mid X)=H(Y)$
- If Y is a deterministic function of $X: H(Y \mid X)=0$

Mutual Information

Mutual information:

$$
\begin{gathered}
I(X, Y)=H(X)-H(X \mid Y) \\
=-\sum_{x, y} \operatorname{Pr}(x, y) \log \left(\frac{\operatorname{Pr}(x) \operatorname{Pr}(y)}{\operatorname{Pr}(x, y)}\right)
\end{gathered}
$$

- Amount of info gained about X when you observe Y
- Reduction in uncertainty about X when you observe Y
- If X and Y are independent, $I(X, Y)=0$
- If X is a deterministic function of $Y, I(X, Y)=H(X)=H(Y)$

Mutual Information

KL Divergence

$$
D_{K L}(P \| Q)=-\sum_{x} P(x) \log \left(\frac{P(x)}{Q(x)}\right)
$$

- Expected value of the log differences of two distributions
- Also called "relative entropy"
- Measure of difference between two distributions
- Not a distance metric
- Not symmetric

KL Divergence and Mutual Information

$$
I(X, Y)=D_{K L}(\operatorname{Pr}(X, Y) \| \operatorname{Pr}(X) \operatorname{Pr}(Y))
$$

- MI is just KL Divergence of product of marginals from the joint distribution
- I.e., amount of extra information needed if we use the marginals instead of the joint distribution

Information Bottleneck Theory

Information Plane

Information Bottleneck

Developed by Naftali Tishby's group [7, 6]
Uses the idea of the information plane and mutual information to argue:

1. DL uses two phases: (1) initial fitting phase and (2) compression phase
2. Compression phase causes DL's strong generalization performance
3. Compression phase occurs because of the diffusion-like behavior of SGD
4. MI is estimated with binning

Mutual Information Estimation

For each layer h activity, want to compute:

$$
I(h ; X)=H(h)-H(h \mid X)
$$

The issue: h is not discrete

Continuous Activity Problem

If h is continuous then, let $h=Z$ (because we're already used H for entropy):

$$
H(Z)=-\int_{\mathbb{R}} p_{Z}(z) \log p_{Z}(z) \mathrm{d} z
$$

If X is a delta function (as it is in our case), then p_{Z} is a delta function, and so $H(Z)=-\infty$

Two Workarounds

To make $H(h)$ finite, we can try two approaches:

1. Discretize h by binning [6]
2. Add noise to convert h into a Gaussian mixture $[3,4,5]$

In both cases, we assume h is a vector of i.i.d dimensions.

Workaround 1: Binning

Do $T=\operatorname{bin}(h)$ and compute $p_{i}=$ the probability T_{i} is in bin b_{i} :

$$
H(T)=-\sum_{i}^{N} p_{i} \log p_{i}
$$

Because $f(X ; W)=h$ is a deterministic mapping, we have:

$$
H(T \mid X)=0
$$

Which means:

$$
I(T ; X)=H(T)-H(T \mid X)=H(T)
$$

About Binning

- Valid way of approximating MI (it's what Tishby does in [6]), but has issues
- How to determine bin width?
- This is a hyperparam that makes a pretty big difference
- The "compression" stage of the IB theory could mostly just be tanh tending to map activities to the extreme bins (thus resembling a coin toss)

Workaround 2: Adding Noise

- Assume the observed distribution of samples $=$ true distribution
- Use $T=h+\epsilon$ where $\epsilon \sim \mathcal{N}\left(0, \sigma^{2} l\right)$
- Aka, T is a mixture of Gaussians, with one Gaussian centered at each sample

Kernel Density Entropy (KDE) Estimation

Kolchinsky et al (2017) [3, 4] MI upper bounds:

$$
I(T ; X)=H(T) \leq-\frac{1}{P} \sum_{i} \log \frac{1}{P} \sum_{j} \exp \left(-\frac{1}{2} \frac{\left\|h_{i}-h_{j}\right\|_{2}^{2}}{\sigma^{2}}\right)=H(T)_{u}
$$

And:

$$
\begin{gathered}
I(T ; Y)=H(T)-H(T \mid Y) \\
\leq H(T)_{u}-\sum_{l}^{L} p_{l}\left[-\frac{1}{P I} \sum_{i, Y_{i}=I} \log \frac{1}{P I} \sum_{j, Y_{j}=I} \exp \left(-\frac{1}{2} \frac{\left\|h_{i}-h_{j}\right\|_{2}^{2}}{\sigma^{2}}\right)\right]
\end{gathered}
$$

(Lower bounds are the same, except replace σ^{2} with $4 \sigma^{2}$)

IB Theory Pros

- Mutual information is a useful tool for exploring the relationships between outputs, inputs, and layers
- Information plane is a useful tool for visualizing training
- Tishby is right that hidden layers compression task-irrelevant information
- Bottleneck bound is probably useful

IB Theory Cons

- Refutation paper: [5]
- There isn't a general DL information plane; it depends greatly on the activations used
- The two-phase idea seems like it's entirely an artifact of using tanh layers (which no one uses...)
- No clear connection between compression and generalization; models with poor compression can generalize well
- Compression phase with tanh isn't actually caused by SGD
- Compression can occur during the training phase, not some distinct compression phase

Information Theory and the

Spectral Domain

Graph Fourier Transform

Classical Fourier Transform:

$$
\begin{equation*}
\hat{x}(\zeta)=\left\langle x, e^{e \pi i \zeta t}\right\rangle=\int_{-\infty}^{\infty} x(t) e^{-2 \pi i \zeta t} \mathrm{~d} t=\mathcal{F}\{x(t)\} \tag{1}
\end{equation*}
$$

Graph Fourier Transform:

$$
\begin{equation*}
\hat{x}\left(\lambda_{l}\right)=\langle x, U\rangle=\sum_{i=0}^{N-1} x(i) u_{l}^{*}(i)=\mathcal{F}\{x(i)\} \tag{2}
\end{equation*}
$$

Convolution

Classical Convolution:

$$
\begin{equation*}
f(t)=(x * h)(t)=\int_{\mathbb{R}} x(\tau) h(t-\tau) \mathrm{d} \tau \tag{3}
\end{equation*}
$$

Issue: how do you time shift using τ in the vertex domain? Convolution Theorem is useful:

$$
\begin{equation*}
\mathcal{F}\{x * h\}=\mathcal{F}\{x(t)\} \cdot \mathcal{F}\{h(t)\} \tag{4}
\end{equation*}
$$

(This is also the theory behind FFT-based and Winograd convolution)

Graph Convolution

Using the convolution theorem and replacing complex exponentials with Laplacian eigenvectors:

$$
\begin{equation*}
(x * h)(i)=\sum_{l=0}^{N-1} \hat{x}\left(\lambda_{l}\right) \hat{h}\left(\lambda_{l}\right) u_{l}(i) \tag{5}
\end{equation*}
$$

Interpretation: vertex-domain convolution $=$ spectral domain element-wise multiplication

Computing Graph Convolutions

Another way of showing graph convolution:

$$
\begin{equation*}
h * x=U\left(\left(U^{\top} h\right) \odot\left(U^{\top} x\right)\right)=U \hat{H} U^{\top} x \tag{6}
\end{equation*}
$$

where $\hat{\mathrm{H}}=\operatorname{diag}\left(\hat{h_{1}}, \ldots, \hat{h_{n}}\right)=\hat{h}(\Lambda)$ are the spectral filter coefficients.

Computing Graph Convolutions

Approximations:

- Chebynets: Approximate $h * x$ with k th-order Chebyshev polynomials $\rightarrow \hat{h_{i}}=\hat{h}\left(\lambda_{i}\right)=\left(2-\lambda_{i}\right)^{k}$
- GCN: set $k=1$ and use normalized Laplacian with self-loops $\rightarrow \hat{h}_{i}=\left(1-\lambda_{i}\right)^{k}$; approximate $k>1$ with multiple layers

GCN:

$$
\begin{equation*}
h * x \approx \Theta\left(\widetilde{D}^{-1 / 2} \widetilde{A} \widetilde{D}^{-1 / 2}\right) x \tag{7}
\end{equation*}
$$

Cross-Correlation

Classical cross-correlation:

$$
\begin{equation*}
R_{x h}(t)=(x \star h)(t)=\int_{\mathrm{R}} x(\tau)^{*} h(t+\tau) \mathrm{d} \tau \tag{8}
\end{equation*}
$$

Cross-correlation theorem:

$$
\begin{equation*}
\mathcal{F}\{x \star h\}=\mathcal{F}\{x(t)\}^{*} \cdot \mathcal{F}\{h(t)\} \tag{9}
\end{equation*}
$$

Graph cross-correlation:

$$
\begin{equation*}
R_{x h}(i)=(x \star h)(i)=\sum_{l=0}^{N-1} \hat{x}\left(\lambda_{l}\right)^{*} \hat{h}\left(\lambda_{l}\right) u_{l}(i) \tag{10}
\end{equation*}
$$

(Note the complex conjugate; if \hat{x} not complex, cross-correlation $=$ convolution)

Stationary Time-Series Processes

If $x(t)$ is a (strict) stationary time-series process, then:

1. $E\left[x_{t}\right]=\mu$ for some constant μ
2. $\operatorname{Var}\left[x_{t}\right]=\sigma^{2}$ for some constant σ^{2}
3. $\operatorname{Cov}\left(x_{t}, x_{t+h}\right)$ is a function of the delay h but not t

Intuitively: $x(t)$ is always the same data-generating process.
Strict stationarity is required for time-series linear regression.

Spectral Density and Autocorrelation

Energy spectral density:

$$
\begin{equation*}
S_{x x}(\zeta)=|\hat{x}(\zeta)|^{2} \tag{11}
\end{equation*}
$$

Wiener-Khinchin Theorem: if $x(t)$ is a stationary random process:

$$
\begin{equation*}
S_{x x}(\zeta)=\mathcal{F}\left\{R_{x x}\right\}=\hat{R}_{x x}(\zeta) \tag{12}
\end{equation*}
$$

Spectral Density and Cross-correlation

Spectral Density:

$$
\begin{equation*}
S_{x h}(\zeta)=\mathcal{F}\left\{R_{x h}\right\}=\mathcal{F}\{(x \star h)(\tau)\} \tag{13}
\end{equation*}
$$

Spectral Entropy

Treat densities as unnormalized scores:

$$
\begin{equation*}
P\left(\lambda_{i}\right)=\left|x\left(\lambda_{i}\right)\right|^{2}=S_{x x}\left(\lambda_{i}\right)=\hat{R}_{x x}\left(\lambda_{i}\right) \tag{14}
\end{equation*}
$$

Normalize to treat as a probability density:

$$
\begin{equation*}
p_{i}=\frac{P\left(\lambda_{i}\right)}{\sum_{j} P\left(\lambda_{j}\right)} \tag{15}
\end{equation*}
$$

Spectral entropy of \hat{x} :

$$
\begin{equation*}
H(\hat{x})=-\sum_{i} p_{i} \log p_{i} \tag{16}
\end{equation*}
$$

Spectral Density and Feature Locality

- Spectral density provides information on locality of feature distribution
- If the power spectrum decays at higher frequencies, it indicates local feature smoothness
- For "natural" images, [2] state:

$$
\begin{equation*}
E\left(|\hat{x}(\zeta)|^{2}\right) \sim \zeta^{-2} \tag{17}
\end{equation*}
$$

Mutual Information and Frequency

[1] provides that for a pair of Gaussian stationary time-series processes $x(t)$ and $y(t)$:

$$
\begin{equation*}
I(x, y)=-\frac{1}{4 \pi} \int_{0}^{2 \pi} \log \left[1-\left|R_{x y}(\lambda)\right|^{2}\right] \mathrm{d} \lambda \tag{18}
\end{equation*}
$$

Can we define something similar for graph signals?

References

D. R. Brillinger and A. Guha.Mutual information in the frequency domain.
Journal of statistical planning and inference, 137(3):1076-1084, 2007.

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun.

Spectral networks and locally connected networks on graphs.
arXiv preprint arXiv:1312.6203, 2013.
雷
A. Kolchinsky and B. Tracey.

Estimating mixture entropy with pairwise distances.
Entropy, 19(7):361, 2017.
R. Kolchinsky, B. D. Tracey, and D. H. Wolpert.

Nonlinear information bottleneck.
arXiv preprint arXiv:1705.02436, 2017.

References ii

A. M. Saxe, Y. Bansal, J. Dapello, M. Advani, A. Kolchinsky, B. D. Tracey, and D. D. Cox.On the information bottleneck theory of deep learning. 2018.R. Shwartz-Ziv and N. Tishby.

Opening the black box of deep neural networks via information.
arXiv preprint arXiv:1703.00810, 2017.
\square N. Tishby, F. C. Pereira, and W. Bialek.

The information bottleneck method.
arXiv preprint physics/0004057, 2000.

