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Information Theory Basics



Information Content

Information content = the amount you learn from an event E :

I (E ) = − log(Pr(E )) = log

(
1

Pr(E )

)

• Suppose you know Pr(E ) = 1

• You don’t learn anything when you’re told E occurs

• =⇒ I (E ) = 0

• Basic intuition: you learn more from surprising (i.e., unlikely) events

(hence information content is also called “surprisal”)
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Weather Example

If it’s sunny:

• Reduction in uncertainty = 1/0.75 = 1.333

• I (S) = log(1.333) = 0.41

If it’s raining:

• Reduction in uncertainty = 1/0.25 = 4

• I (R) = log(4) = 2
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Entropy

Entropy = expected amount of information:

H(X ) = −
∑
x

Pr(x) log(Pr(x))

“Amount of uncertainty about a random variable X”

“Virginia weather is unpredictable” = “Virginia weather has high

entropy”
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Important Entropy Measures

• Joint entropy: H(X ,Y ) = −
∑

x,y Pr(x , y) log(Pr(x , y))

• Conditional entropy: H(Y |X ) = −
∑

x,y Pr(x , y) log
(

Pr(x,y)
Pr(x)

)
• If X and Y are independent: H(Y |X ) = H(Y )

• If Y is a deterministic function of X : H(Y |X ) = 0
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Mutual Information

Mutual information:

I (X ,Y ) = H(X )− H(X |Y )

= −
∑
x,y

Pr(x , y) log
(Pr(x)Pr(y)

Pr(x , y)

)

• Amount of info gained about X when you observe Y

• Reduction in uncertainty about X when you observe Y

• If X and Y are independent, I (X ,Y ) = 0

• If X is a deterministic function of Y , I (X ,Y ) = H(X ) = H(Y )
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Mutual Information
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KL Divergence

DKL(P||Q) = −
∑
x

P(x) log
(P(x)

Q(x)

)

• Expected value of the log differences of two distributions

• Also called “relative entropy”

• Measure of difference between two distributions

• Not a distance metric

• Not symmetric

8



KL Divergence and Mutual Information

I (X ,Y ) = DKL(Pr(X ,Y )||Pr(X )Pr(Y ))

• MI is just KL Divergence of product of marginals from the joint

distribution

• I.e., amount of extra information needed if we use the marginals

instead of the joint distribution
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Information Bottleneck Theory



Information Plane
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Information Bottleneck

Developed by Naftali Tishby’s group [7, 6]

Uses the idea of the information plane and mutual information to argue:

1. DL uses two phases: (1) initial fitting phase and (2) compression

phase

2. Compression phase causes DL’s strong generalization performance

3. Compression phase occurs because of the diffusion-like behavior of

SGD

4. MI is estimated with binning
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Mutual Information Estimation

For each layer h activity, want to compute:

I (h;X ) = H(h)− H(h|X )

The issue: h is not discrete
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Continuous Activity Problem

If h is continuous then, let h = Z (because we’re already used H for

entropy):

H(Z ) = −
∫
R
pZ (z) log pZ (z)dz

If X is a delta function (as it is in our case), then pZ is a delta function,

and so H(Z ) = −∞
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Two Workarounds

To make H(h) finite, we can try two approaches:

1. Discretize h by binning [6]

2. Add noise to convert h into a Gaussian mixture [3, 4, 5]

In both cases, we assume h is a vector of i.i.d dimensions.
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Workaround 1: Binning

Do T = bin(h) and compute pi = the probability Ti is in bin bi :

H(T ) = −
N∑
i

pi log pi

Because f (X ;W ) = h is a deterministic mapping, we have:

H(T |X ) = 0

Which means:

I (T ;X ) = H(T )− H(T |X ) = H(T )
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About Binning

• Valid way of approximating MI (it’s what Tishby does in [6]), but

has issues

• How to determine bin width?

• This is a hyperparam that makes a pretty big difference

• The “compression” stage of the IB theory could mostly just be tanh

tending to map activities to the extreme bins (thus resembling a

coin toss)
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Workaround 2: Adding Noise

• Assume the observed distribution of samples = true distribution

• Use T = h + ε where ε ∼ N (0, σ2I )

• Aka, T is a mixture of Gaussians, with one Gaussian centered at

each sample
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Kernel Density Entropy (KDE) Estimation

Kolchinsky et al (2017) [3, 4] MI upper bounds:

I (T ;X ) = H(T ) ≤ − 1

P

∑
i

log
1

P

∑
j

exp

(
−1

2

||hi − hj ||22
σ2

)
= H(T )u

And:

I (T ;Y ) = H(T )− H(T |Y )

≤ H(T )u −
L∑
l

pl

− 1

Pl

∑
i,Yi=l

log
1

Pl

∑
j,Yj=l

exp

(
−1

2

||hi − hj ||22
σ2

)
(Lower bounds are the same, except replace σ2 with 4σ2)
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IB Theory Pros

• Mutual information is a useful tool for exploring the relationships

between outputs, inputs, and layers

• Information plane is a useful tool for visualizing training

• Tishby is right that hidden layers compression task-irrelevant

information

• Bottleneck bound is probably useful
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IB Theory Cons

• Refutation paper: [5]

• There isn’t a general DL information plane; it depends greatly on

the activations used

• The two-phase idea seems like it’s entirely an artifact of using tanh

layers (which no one uses...)

• No clear connection between compression and generalization; models

with poor compression can generalize well

• Compression phase with tanh isn’t actually caused by SGD

• Compression can occur during the training phase, not some distinct

compression phase
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Information Theory and the

Spectral Domain



Graph Fourier Transform

Classical Fourier Transform:

x̂(ζ) = 〈x , eeπiζt〉 =

∫ ∞
−∞

x(t)e−2πiζtdt = F{x(t)} (1)

Graph Fourier Transform:

x̂(λl) = 〈x,U〉 =
N−1∑
i=0

x(i)u∗l (i) = F{x(i)} (2)
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Convolution

Classical Convolution:

f (t) = (x ∗ h)(t) =

∫
R
x(τ)h(t − τ)dτ (3)

Issue: how do you time shift using τ in the vertex domain? Convolution

Theorem is useful:

F{x ∗ h} = F{x(t)} · F{h(t)} (4)

(This is also the theory behind FFT-based and Winograd convolution)
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Graph Convolution

Using the convolution theorem and replacing complex exponentials with

Laplacian eigenvectors:

(x ∗ h)(i) =
N−1∑
l=0

x̂(λl)ĥ(λl)ul(i) (5)

Interpretation: vertex-domain convolution = spectral domain

element-wise multiplication
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Computing Graph Convolutions

Another way of showing graph convolution:

h ∗ x = U
(
(U>h)� (U>x)

)
= UĤU>x (6)

where Ĥ = diag(ĥ1, ..., ĥn) = ĥ(Λ) are the spectral filter coefficients.
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Computing Graph Convolutions

Approximations:

• Chebynets: Approximate h ∗ x with kth-order Chebyshev polynomials

→ ĥi = ĥ(λi ) = (2− λi )k

• GCN: set k = 1 and use normalized Laplacian with self-loops

→ ĥi = (1− λi )k ; approximate k > 1 with multiple layers

GCN:

h ∗ x ≈ Θ
(
D̃−1/2ÃD̃−1/2

)
x (7)
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Cross-Correlation

Classical cross-correlation:

Rxh(t) = (x ? h)(t) =

∫
R

x(τ)∗h(t + τ)dτ (8)

Cross-correlation theorem:

F{x ? h} = F{x(t)}∗ · F{h(t)} (9)

Graph cross-correlation:

Rxh(i) = (x ? h)(i) =
N−1∑
l=0

x̂(λl)
∗ĥ(λl)ul(i) (10)

(Note the complex conjugate; if x̂ not complex, cross-correlation =

convolution)
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Stationary Time-Series Processes

If x(t) is a (strict) stationary time-series process, then:

1. E [xt ] = µ for some constant µ

2. Var[xt ] = σ2 for some constant σ2

3. Cov(xt , xt+h) is a function of the delay h but not t

Intuitively: x(t) is always the same data-generating process.

Strict stationarity is required for time-series linear regression.
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Spectral Density and Autocorrelation

Energy spectral density:

Sxx(ζ) = |x̂(ζ)|2 (11)

Wiener-Khinchin Theorem: if x(t) is a stationary random process:

Sxx(ζ) = F{Rxx} = R̂xx(ζ) (12)
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Spectral Density and Cross-correlation

Spectral Density:

Sxh(ζ) = F{Rxh} = F{(x ? h)(τ)} (13)
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Spectral Entropy

Treat densities as unnormalized scores:

P(λi ) = |x(λi )|2 = Sxx(λi ) = R̂xx(λi ) (14)

Normalize to treat as a probability density:

pi =
P(λi )∑
j P(λj)

(15)

Spectral entropy of x̂ :

H(x̂) = −
∑
i

pi log pi (16)
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Spectral Density and Feature Locality

• Spectral density provides information on locality of feature

distribution

• If the power spectrum decays at higher frequencies, it indicates local

feature smoothness

• For “natural” images, [2] state:

E (|x̂(ζ)|2) ∼ ζ−2 (17)
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Mutual Information and Frequency

[1] provides that for a pair of Gaussian stationary time-series processes

x(t) and y(t):

I (x , y) = − 1

4π

∫ 2π

0

log[1− |Rxy (λ)|2]dλ (18)

Can we define something similar for graph signals?
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