
Time and Space Complexity of Graph Convolutional
Networks

Derrick Blakely, Jack Lanchantin, Yanjun Qi
University of Virginia

{dcb7xz, jjl5sw, yq2h}@virginia.edu

Abstract

We analyze the time and space complexity of graph convolutional network (GCN)
layers. This is done for (1) forward computation and (2) back-propagation with
gradient descent and stochastic gradient descent. We draw connections to software
implementations, particularly PyTorch Geometric.

1 Background

1.1 The GCN Layer

We introduce the semi-supervised graph convolutional network (GCN) model from [4]. Suppose we
are given a graph G = (V,E,A), with N = |V | nodes, |E| edges, and a sparse adjacency matrix
A of size N ×N . Each node corresponds to an F -dimensional embedding, so we have an N × F
embedding matrix X . On average, each node has a degree of d.

To show the computation of a GCN, first we define Â = A+ I , the adjacency matrix with self-loops.
D̂ is the diagonal degree matrix of Â. A′ is the reduced adjacency matrix with self-loops added to
every node:

A′ = D̂−
1
2 ÂD̂−

1
2 (1)

The computation of the lth layer of a GCN network is:

Xl+1 = σ(A′XlWl) (2)

Where σ(·) is a non-linear activation function (typically ReLU) and Wl is a feature transformation
matrix ∈ RFl×Fl+1 . In other words, it maps node features of size Fl to features of size Fl+1. For
simplicity, we assume the node features at every layer are size-F . As such, Wl is an F × F matrix.

It is common to decompose a GCN layer’s computation into two parts: (1) computation of Zl, the
transformation of the input features; (2) computation of Xl+1, the final outputted embeddings of the
layer:

Zl = XlWl (3)

Xl+1 = σ(A′Zl) (4)

1.2 Implementation and Semantics

The layers of many GNNs, including GCNs, are often given Gather-Apply-Scatter (GAS) or Message-
Passing semantics. Just a few examples: PyTorch Geometric [2], NGra [5], Cavs [8], and DGL [1] all
do this. These semantics provide intuition and influence software implementations.

First, the Zl = XlWl multiplication transforms input features to output features. In subsequent steps,
these are to be used by normalization and neighborhood aggregation. Computing Zl simply requires

a dense matrix multiplication. For example, PyTorch Geometric runs Z = torch.matmul(X,W) as
the first line of code in a GCN layer.

Next, we must compute A′. PyTorch Geometric does not directly compute this. Rather, they use a
coordinate (COO) form edge index matrix of size 2× |E| and store the normalization coefficients in
a separate matrix called "norm." These steps can be precomputed and reused by all layers and each
subsequent epoch.

The computation of A′Zl is what involves the so-called "message passing" and aggregation. This is
computed as a sparse operation decomposed into three phases. Conveniently, the three phases lend
themselves to a GAS or Message-Passing interpretation:

1. Create messages: in the GCN case, we take each zi ∈ Zl and normalize. Each normalized
zi is described as a "message" that must be passed from a node to each of its neighbors.

2. Scatter: this phase performs a sparse multiplication of the adjacency matrix with Zl. Because
A is not explicitly used, the scatter stage loops over Zl and E to accumulate each zi into
its neighbors. It could be achieved with a literal A′Zl multiplication, but this would be
inefficient as discussed below. The output of scatter is almost the final embedding output for
the layer.

3. Update (optional): provides an additional update to each node embedding. For example, an
additive bias.

The output of the above stages is A′XlWl.

In summary, Zl = XlWl is implemented as an explicit matrix multiplication. A′Zl is an implicit
operation with message-passing semantics, carried out in three stages. The final step of a GCN layer
is simply to apply the nonlinearity, yielding the final embeddings as Xl+1 = σ(A′XlWl).

2 Forward Pass

We analyze the complexity of the forward step by decomposing Equation 2 into three high-level
operations:

1. Zl = XlWl: feature transformation
2. Xl+1 = A′Zl: neighborhood aggregation
3. σ(·): activation

Part 1 is a dense matrix multiplication between matrices of size N × Fl and Fl × Fl+1. We assume
for all l, Fl = Fl+1 = F . Therefore, this is O(NF 2).

Naively, part 2 is a multiplication between matrices of size N ×N and N × F , yielding O(N2F)
time complexity. In practice, we compute this using a sparse operator, such as the PyTorch [6] scatter
function. For each row (i, j) of the edge matrix E, we must compute xl+1

j + = zli, which are each
F -dimensional vectors. This yields a total cost of O(|E|F). An alternative view is that each node has
d neighbors on average. Neighborhood aggregation for each node therefore requires O(dF) work,
with a total of O(NdF) = O(|E|F).

Part 3 is simply an element-wise function, so its cost is O(N).

Over L layers, this results in O(LNF 2 + LNdF + LN) = O(LNF 2 + LNdF) = O(LNF 2 +
L|E|F).

3 Backward Pass

3.1 Full Gradient Descent

We learn the LWl and Xl matrices in equation 2 with gradient descent by minimizing:

L =
1

|Y |
∑

i∈[|Y |]

loss(yi, ŷi) (5)

2

where ŷi is the ith row of Ŷ = σ(A′XLWL), yi is the ith true label from Y . Full gradient
descent is used in the original GCN paper [4]. For each training iteration, we must compute
∇WL = [∂L

∂W 1 , ...,
∂L

∂WL] and∇XL = [∂L
∂X1 , ...,

∂L
∂XL], which are upper bounded by the computation

of ∂L
∂W 1 and ∂L

∂X1 , respectively. Applying the chain rule, we are interested in computing:

∂L
∂W1

=
(∂L
∂Ŷ

)(∂Ŷ
∂ZL

)(∂ZL

∂XL

)
...
(∂Zl

∂Xl

)(∂Xl

∂Zl−1

)
...
(∂X2

∂Z1

)(∂Z1

∂W1

)
(6)

∂L
∂X1

=
(∂L
∂Ŷ

)(∂Ŷ
∂ZL

)(∂ZL

∂XL

)
...
(∂Zl

∂Xl

)(∂Xl

∂Zl−1

)
...
(∂X2

∂Z1

)(∂Z1

∂X1

)
(7)

Evaluation of these equations requires evaluating a number of Jacobians. Full evaluation of any of
these Jacobians is prohitively expensive in both time and memory. However, using reverse-mode
automatic differentiation, as in PyTorch [7], evaluation of a function’s Jacobian requires only a
constant factor more computation than forward evaluation of the function. Let f be a matrix-valued
function using elementary operators, T (f,∇f) be the computation time for evaluating f and∇f , and
T (f) be the computation time for evaluating f . As shown in [3], their ratio is bound by a constant
factor C using reverse-mode automatic differentiation:

T (f,∇f)

T (f)
≤ C (8)

From this we may conclude that the backwards pass is also O(LNF 2 + L|E|F). However, we show
in practice how this can be achieved for the composition of matrix operations from equation 2. We
start with the case of a 1-layer GCN and build up to a generalized expression.

3.2 1-Layer GCN: Differentiating with respect to W

We look at the case of performing backpropagation for a 1-layer GCN. For simplicity, we ignore the
activation σ(·), defining Ŷ = A′Z1 and Z1 = X1W1. Therefore, we seek to compute:

∂L
∂W1

=
(∂L
∂Ŷ

)(∂Ŷ
∂Z1

)(∂Z1

∂W1

)
(9)

We assume we are given ∂L
∂Ŷ

, so we must next compute ∂Ŷ
∂ZL . If Ŷ and ZL have dimensions N × F ,

then this partial is an (N × F)× (N × F) Jacobian. Full evaluation of this Jacobian is Ω(N2F 2) in
time and space. Just imagine how expensive this would be if we let N = F = 1000, reasonable sizes
for a hidden GCN layer. We would need to compute 1012 entries and if each one is a 32-bit float, we
would need 4TB of memory.

Fortunately, we do not need to fully evaluate the Jacobian of Ŷ at Z1. Many of the entries will simply
be 0, thus making no contribution to any parameter updates. And in the case of most neural network
layers, the non-zero entries can computed efficiently. Rather, we can focus on what really needs to be
computed to obtain

(
∂L
∂Ŷ

)(
∂Ŷ
∂ZL

)
. In fact, we can simply compute:(∂L
∂Ŷ

)(∂Ŷ
∂ZL

)
=
(
A′
)>(∂L

∂Ŷ

)
(10)

Because (A′)> is N ×N and
(

∂L
∂Ŷ

)
is N ×F , this requires time O(N2F). But as noted previously,

A′ is a sparse adjacency matrix, so we can compute this in time O(|E|F). In addition to being much
more efficient, this formulation also has a nice interpretation. Recall that A′Z performs neighborhood
aggregation. (A′)> reverses the direction of all of the edges, so (A′)>

(
∂L
∂Ŷ

)
can be seen as dispersing

loss values back to the nodes’ neighbors.

For clarity, we let D = (A′)>
(

∂L
∂Ŷ

)
. Therefore, continuing with backpropagation, we have:

∂L
∂W 1

= D
(∂Z1

∂W1

)
(11)

3

Here, we encounter the same problem as before: ∂ZL

∂WL is a Jacobian of size (N × F) × (F × F),
which is prohibitively large. However, we can use essentially the same trick as before to avoid full
evaluation. Noting that Z1 = X1W1, we have:

∂L
∂W 1

= X>D (12)

= X>(A′)>
(∂L
∂Ŷ

)
(13)

X> is (F ×N) and D is (N × F), so the output is (F × F). This is as expected considering we
need a total of F 2 ∂L

∂Wi,j
values to perform the weight updates. This multiplication is O(NF 2). The

total cost of computing ∂L
∂W1 is O(NF 2 + |E|F).

3.3 1-Layer GCN: Differentiating with respect to X

In this case, we seek to compute:

∂L
∂X1

=
(∂L
∂Ŷ

)(∂Ŷ
∂Z1

)(∂Z1

∂X1

)
(14)

As before: (∂L
∂Ŷ

)(∂Ŷ
∂Z1

)
=
(
A′
)>(∂L

∂Ŷ

)
= D (15)

Which requires O(|E|F) time. Next we compute:

∂L
∂X1

= D
(∂Z1

∂X1

)
(16)

In this case, we can avoid explicit evaluation of the Jacobian of Z1 at X1 by observing:

D
(∂Z1

∂X1

)
= DW> =

(
A′
)>(∂L

∂Ŷ

)
W> (17)

This requires an (N × F) with (F × F) matrix multiplication, done in O(NF 2) time. The total cost
of computing L

X1 is O(NF 2 + |E|F).

3.4 2-Layer GCN

Now let us examine the case of a 2-layer GCN, again with activations omitted, where we seek to
compute the partial derivative of the loss with respect to the first layer node embeddings X1:

∂L
∂X1

=
(∂L
∂Ŷ

)(∂Ŷ
∂Z2

)(∂Z2

∂X2

)(∂X2

∂Z1

)(∂Z1

∂X1

)
(18)

Applying the two techniques described in the 1-layer GCN for avoiding full Jacobian evaluation, we
can compute this as follows:

∂L
∂X1

=

[(
A′
)>(∂L

∂Ŷ

)(∂Z2

∂X2

)](∂X2

∂Z1

)(∂Z1

∂X1

)
(19)

=

[(
A′
)>(∂L

∂Ŷ

)(
W2

)>](∂X2

∂Z1

)(∂Z1

∂X1

)
(20)

=
(
A′
)>[(

A′
)>(∂L

∂Ŷ

)(
W2

)>](∂Z1

∂X1

)
(21)

=
(
A′
)>[(

A′
)>(∂L

∂Ŷ

)(
W2

)>](
W1

)>
(22)

4

The computation is almost identical with respect to the first layer weight matrix W1:

∂L
∂W1

=

[(∂L
∂Ŷ

)(∂Ŷ
∂Z2

)(∂Z2

∂X2

)](∂X2

∂Z1

)(∂Z1

∂W1

)
(23)

=

[(
A′
)>(∂L

∂Ŷ

)(∂Z2

∂X2

)](∂X2

∂Z1

)(∂Z1

∂W1

)
(24)

=

[(
A′
)>(∂L

∂Ŷ

)(
W2

)>](∂X2

∂Z1

)(∂Z1

∂W1

)
(25)

=
(
A′
)>[(

A′
)>(∂L

∂Ŷ

)(
W2

)>](∂Z1

∂W1

)
(26)

=
(
X1
)>(

A′
)>[(

A′
)>(∂L

∂Ŷ

)(
W2

)>]
(27)

3.5 L-Layer GCN

We note that the term
(
A′
)>(

∂L
∂Ŷ

)(
W2

)>
above is equivalent to

(
∂L
∂X2

)
, which we can compute

and store at each layer. Thus, the general recursive form of the partial derivatives of the loss with
respect to the node embedding and weight matrix at each layer are:

∂L
∂Xl−1 =

(
A′
)>(∂L

∂Xl

)(
Wl−1

)>
(28)

∂L
∂Wl−1 =

(
Xl−1

)>(
A′
)>(∂L

∂Xl

)
(29)

where the initial condition is ∂L
∂ ˆXL+1

= ∂L
∂Ŷ

, and we can compute the partials for layer L down to 1.

3.6 Complexity

At each layer, the three operations we need to compute are:

D =
(
A′
)>(∂L

∂ ˆXl+1

)
, (30)(

Xl
)>(

D
)
, (31)(

D
)(

Wl
)>
. (32)

Since ∂L
∂Ŷ

is of size (N × F), A′ is (N ×N), Xl is (N × F), and Wl is (F × F), these operations
result in the following time complexity:

O(NF 2 +N2F) (33)

Again noting that each multiplication with A′ is a sparse multiplication, we have:

O(L|E|F 2 + LN2F) (34)

3.7 Stochastic Gradient Descent

GNN convergence is improved with SGD, with a bath B ⊆ [N]; B is a batch of node indexes. Let
b = |B| So we have:

L =
1

b

∑
i∈B
∇loss(yi, ŷi) (35)

5

3.8 Summary

Dense Sparse
Forward Time LN2F + LNF 2 LEF + LNF 2

Forward Space N2 + LF 2 + LNF E + LF 2 + LNF
Backward Time LN2F + LNF 2 LEF + LNF 2

Backward Space N2 + LF 2 + LNF E + LF 2 + LNF

4 Self Attention

In the transformer network and graph attention networks, instead of using the original adjacency
matrix A′, we instead use a parameterized matrix α, which indicates edge importance for each
update.

Xl+1 = σ(αXlWl
V) (36)

4.1 Forward Pass

Specifically, the update steps for self attention are as follows:

Ql = XlWl
Q

Kl = XlWl
K

Vl = XlWl
V

αl′ = QlKl>

αl = softmax(αl′)

Xl+1 = αlVl

where each Wl is an F × F matrix, Xl is N × F , and αl is N ×N .

At each layer l, we need to compute XlWl
Q, XlWl

K , and XlWl
V , which each take O(NF 2) time

and O(NF +F 2) space. Unlike in the GCN case, we also now need to compute QlKl> at each layer
in order to get αl′ . This operation takes O(N2F) time and O(N2 +NF) space. Finally, computing
αlVl takes O(N2F) time and O(N2 +NF + F 2) space. These computations result in a per layer
time complexity of O(N2F + NF 2) and space complexity of O(N2 + NF + F 2). All of these
operations are computed at each layer, leading to final time complexity of O(LN2F + LNF 2) and
space complexity of O(LN2 + LNF + LF 2).

4.2 Backward Pass

4.3 Summary

Dense Sparse
Forward Time LN2F + LNF 2 LEF + LNF 2

Forward Space LN2 + LF 2 + LNF LE + LF 2 + LNF
Backward Time LN2F + LNF 2

Backward Space LN2 + LF 2 + LNF

References
[1] Deep graph library (dgl), 2019. Accessed: 2019-06-06.

[2] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

6

[3] Andreas Griewank et al. On automatic differentiation. Mathematical Programming: recent
developments and applications, 6(6):83–107, 1989.

[4] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[5] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and Yafei Dai.
Towards efficient large-scale graph neural network computing. arXiv preprint arXiv:1810.08403,
2018.

[6] Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan. Pytorch. Computer software.
Vers. 0.3, 1, 2017.

[7] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[8] Shizhen Xu, Hao Zhang, Graham Neubig, Wei Dai, Jin Kyu Kim, Zhijie Deng, Qirong Ho,
Guangwen Yang, and Eric P Xing. Cavs: An efficient runtime system for dynamic neural
networks. In 2018 {USENIX} Annual Technical Conference ({USENIX} {ATC} 18), pages
937–950, 2018.

7

	Background
	The GCN Layer
	Implementation and Semantics

	Forward Pass
	Backward Pass
	Full Gradient Descent
	1-Layer GCN: Differentiating with respect to W
	1-Layer GCN: Differentiating with respect to X
	2-Layer GCN
	L-Layer GCN
	Complexity
	Stochastic Gradient Descent
	Summary

	Self Attention
	Forward Pass
	Backward Pass
	Summary

