Graph Convolutions: More than You Wanted to Know

Presenter: Derrick Blakely

July, 2019

University of Virginia

https://qdata.github.io/deep2Read/

- 1. Survey Goals
- 2. Classical Signal Processing Basics
- 3. Discrete Euclidean Convolution
- 4. Graph Convolution
- 5. Chebyshev Nets and GCNs

Survey Goals

- 1. Explain and unify theoretical origins of graph convolutions
- 2. Explain the key challenges
- 3. Survey the existing algorithms

Theoretical tools underpinning graph convolutions date to 1990s and earlier:

- \bullet < 1990: classical convolution, Fourier transform, convolution theorem, uncertainty principle
- Daubechies, 1990: The Wavelet Transform [2]
- LeCun et al., 1995: Convolutional Neural Networks [7]
- Hammond et al., 2011: Wavelets on Graphs via Spectral Graph Theory [4]
- Shuman et al., 2012: The Emerging Field of Signal Processing on Graphs [8]

Concept	Continuous	Discrete Euclidean	Graphs
Structure	Time	Regularly structured space	Adjacency matrix
Time to Frequency	Fourier Transform (FT)	Discrete FT (DFT)	Graph FT
Fourier Basis	Complex	Discrete complex	Laplacian
	exponentials	exponentials	eigenvectors
Filter Shifting	au variable	Toeplitz operator	None
Efficiency			Polynomial approx.
	FFT	FFT	of Fourier basis
			(and others)
Localization	Continuous Wavelet	Discrete Wavelet	Spectral graph
	Transform (CWT)	Transform (DWT)	theory wavelets

How do we fit all of the above in context?

Graph convolution algos are contingent on the problems they circumvent:

- Generalize Euclidean filtering \rightarrow no regular structure
- No regular structure \rightarrow no vertex domain shift operator
- No vertex domain shift \rightarrow Fourier definition
- Fourier definition \rightarrow need vertex localization
- Need vertex localization \rightarrow use polynomial filter approx.
- No circulant structure \rightarrow can't use traditional Fourier basis
- No traditional Fourier basis \rightarrow Use Laplacian Fourier basis
- Laplacian Fourier basis \rightarrow no FFT
- No FFT \rightarrow need Chebyshev approx.

- Spectral Networks (2013) [1]
- Spatially Localized Graph Convolutions (2015) [5]
- Chebyshev Nets (2016) [3]
- GCNs (2016) [6]
- Graph Attention Networks (2017) [9]

Classical Signal Processing Basics

At least a few reasons:

- 1. Much of the theory and inspiration behind convolutional networks is from classical signal processing; we need to have a hang on some of these concepts
- 2. Continuous domain (e.g., time) is usually more intuitive than vertex domain
- 3. We want to understand how our tools have changed as they've been ported to new domains

When using a filter g to smooth out a signal f:

$$f(t) = (x * g)(t) = \int_{\mathbb{R}} x(\tau)g(t - \tau)d\tau$$
(1)

Classical Convolution

Convolution Properties

- Continuous case: time-invariance (shift with the τ parameter)
- Discrete case: shift-invariance (shift with a Toeplitz matrix; more on this later)
- Commutative
- Convolution theorem: convolution in time domain = multiplication in Fourier domain (more details coming up)
- Convolution

$$x(t) \longrightarrow f(x(t); \theta) \longrightarrow y(t)$$

Figure 1: LTI theory: convolution describes linear time-invariant (LTI) systems

Converts a signal from time domain to frequency domain:

$$\hat{f}(\zeta) = \mathcal{F}\{f(t)\} = \langle f, e^{2\pi i \zeta t} \rangle = \int_{\mathbb{R}} f(t) e^{-2\pi i \zeta t} dt$$
(2)

In general: a Fourier transform is just an inner product of a signal with some *Fourier basis*:

$$\mathcal{F}{f} = \langle f, \Phi \rangle$$

where $\Phi = \{\phi_n\}$ is an orthonormal basis of square-integrable functions. If we define our own Φ , we can define our own Fourier Transform.

 $\label{eq:convolution} \mbox{ Convolution in time domain} = \mbox{point-wise multiplication in frequency} \\ \mbox{ domain:} \\$

$$\mathcal{F}\{x * g\} = \mathcal{F}\{x(t)\} \cdot \mathcal{F}\{g(t)\}$$
(3)

Alternatively:

$$(x * g)(t) = \mathcal{F}^{-1}\{\mathcal{F}\{x(t)\} \cdot \mathcal{F}\{g(t)\}\}$$

$$\tag{4}$$

Important to us for three reasons:

- 1. Explains what convolution does in the frequency domain
- 2. Computing in the Fourier domain can be *faster* than convolving in time domain
- 3. We'll need it to define graph convolutions later

• Classical filtering: amplifying or attenuating frequencies of the signal

$$\hat{f}_{out}(\zeta) = \hat{f}_{in}(\zeta)\hat{g}(\zeta)$$

where $\hat{g}(\cdot)$ is the "transfer function."

• Taking an inverse Fourier transform of the above:

$$f_{out}(t) = \int_{\mathbb{R}} \hat{f}_{in}(\zeta) \hat{g}(\zeta) e^{2\pi i \zeta t} d\zeta = (f_{in} * g)(t)$$

Frequency Filtering

Figure 2: A classical low-pass filter: attenuate the high-frequency components of an input signal (e.g., reduce treble in a song)

- As we'll see, constructing *localized* graph filters is non-trivial
- High localization in time domain means low localization in frequency domain and vice versa
- Has deep roots-Heisenberg's uncertainty principle:

$$\sigma_x \sigma_p \ge \frac{\hbar}{2}$$

• Gabor limit in signal processing:

$$\sigma_t \sigma_f \geq \frac{1}{4\pi}$$

A delta function and its Fourier transform:

Striking a Balance - Wavelets

Gabor/Morlet wavelets:

Time/space and frequency localization makes them very useful for detecting low-level features:

Hypothesis from neuroscience: visual cortex cells are very similar to Gabor filters

- Convolution uses one function to create a sort of "weighted average" with another function
- Convolution in time domain = multiplication in frequency domain
- A Fourier basis is the eigenbasis of our convolution operator
- Law of nature: hard to localize a filter in both time and frequency domain
- Filters reasonably localized in both are useful for image processing

Discrete Euclidean Convolution

Inputs (images, videos, sounds) are composed of patterns that are:

- 1. Locality
- 2. Stationarity/translation invariance
- 3. Hierarchical/multi-scale

- Nearby pixels are related
- When a CNN applies a filter, the filter is spatially localized

Translation Invariance

Same idea that we saw in LTI theory:

Rotation/Viewpoint Invariance

Size Invariance

Illumination Invariance

Result of CNN training: low-level filters resemble Gabor filters, high-level filters look like actual things

Convolution as a Linear Operator

We can express convolution with a filter as a linear operator:

$$x * g = \mathsf{G}x \tag{5}$$

Example:

$$\mathsf{G} = \begin{pmatrix} g_1 & g_2 & g_3 & 0 & 0 \\ 0 & g_1 & g_2 & g_3 & 0 \\ 0 & 0 & g_1 & g_2 & g_3 \end{pmatrix}$$

- Circulant matrix: each row is just the previous row shifted to the right (as in previous example)
- Shift-invariant linear system ⇐⇒ G is a Toeplitz matrix (circulant matrices are Toeplitz matrices)

G is diagonalized by a Fourier basis:

$$\mathsf{G}=\mathsf{U}\mathsf{\Lambda}\mathsf{U}^ op$$

where we can use a discrete Fourier basis as our orthonormal basis:

$$u_k = \left[e^{\frac{i2\pi kn}{N}} | n = 0, 1, ..., N - 1\right]^{\top}$$
The discrete Fourier transform:

$$\hat{x}_{k} = \sum_{n=0}^{N-1} x_{n} e^{-\frac{i2\pi}{N}kn}$$
(6)

Or using matrices:

$$\hat{\mathbf{x}} = \mathbf{U}^{\top} \mathbf{x} = \mathcal{F} \{ \mathbf{x} \} \tag{7}$$

where U is the "DFT basis" matrix (the columns of U are a set of N independent eigenvectors)

And so we can compute convolution as:

$$x * g = U\Lambda U^{\top} x$$

$$= Ug(\Lambda)Ux$$

$$= U\begin{bmatrix} \hat{g}_{0} & & \\ & \ddots & \\ & & \hat{g}_{N-1} \end{bmatrix} Ux \quad (8)$$

$$= U(U^{\top}g \odot U^{\top}x)$$

$$= \mathcal{F}^{-1}\{\mathcal{F}\{g\} \cdot \mathcal{F}\{x\}\}$$

Three important points:

- 1. If G is circulant, it's a spatially localized filter
- 2. If G is circulant, $Gx \in \mathcal{O}(n \log n)$ using FFT
- 3. If G is not circulant, $Gx \in \mathcal{O}(n^2)$

- Connection to FFT: FFT divide and conquer factorizes G into log *n* sub-problems if G is circulant
- Each sub-problem $\sim \mathcal{O}(n) \rightarrow \mathcal{O}(n \log n)$ total (big mood)
- PyTorch, TensorFlow, etc. use FFT-based implementations of conv layers

Graph Convolution

- Generalize convolution to graphs
- Ensure filter localization
- Ensure efficiency

Lots of problems:

- Intuitively: no way to shift a filter matrix around a graph
- No shift-invariance because our filter operator G doesn't have a circulant structure
- How do we define convolution on graphs?
- Can't use discrete Fourier basis. Need to pick a new one
- (As we'll see) Hard to compute efficiently with our new basis

Laplacian matrix:

$$L = D - A$$

Which acts as a second-derivative operator on graphs:

$$(Lf)(i) = \sum_{j \in \mathcal{N}(i)} W_{i,j} \left[f(i) - f(j) \right]$$

• A pseudo-vector: $\nabla = \left[\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, ..., \frac{\partial}{\partial x_n}\right]$

- A pseudo-vector: $\nabla = [\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, ..., \frac{\partial}{\partial x_n}]$
- Gradient: $\nabla f = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n}\right]$

- A pseudo-vector: $\nabla = [\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, ..., \frac{\partial}{\partial x_n}]$
- Gradient: $\nabla f = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n}\right]$
- Divergence: $\nabla \cdot f = \nabla \cdot [f_1, f_2, ..., f_n] = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + ... + \frac{\partial f_n}{\partial x_n}$

- A pseudo-vector: $\nabla = [\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, ..., \frac{\partial}{\partial x_n}]$
- Gradient: $\nabla f = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n}\right]$
- Divergence: $\nabla \cdot f = \nabla \cdot [f_1, f_2, ..., f_n] = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + ... + \frac{\partial f_n}{\partial x_n}$

• Curl (three dimensions):

$$\nabla \times \mathsf{F} = \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}\right)\mathsf{i} + \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}\right)\mathsf{j} + \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right)\mathsf{k}$$

- A pseudo-vector: $\nabla = [\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, ..., \frac{\partial}{\partial x_n}]$
- Gradient: $\nabla f = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n}\right]$
- Divergence: $\nabla \cdot f = \nabla \cdot [f_1, f_2, ..., f_n] = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + ... + \frac{\partial f_n}{\partial x_n}$

• Curl (three dimensions):

$$\nabla \times \mathbf{F} = \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}\right)\mathbf{i} + \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}\right)\mathbf{j} + \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right)\mathbf{k}$$

• Laplacian: $\nabla \cdot \nabla f = \nabla^2 f = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \dots + \frac{\partial^2 f}{\partial x_n^2}$

Laplacian for Manifolds

How do we define $\nabla \cdot \nabla f = \nabla^2 f$ for graphs? Three questions:

- 1. What does *f* mean for graphs?
- 2. What does the gradient ∇f mean for graphs?
- 3. What does the Laplacian $\nabla \cdot \nabla f$ mean for graphs?

1. Functions Over Graphs

- $f: V \to \mathbb{R}$
- For example: the degree of each node
- In other words: degree of a node is like its potential

- Need an analog to $\nabla = \left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right]$
- Incidence matrix K: each node gets a row and each edge gets a column
- If outgoing edge, $K_{n,e} = -1$
- If incoming edge, $K_{n,e} = 1$
- Neither: $K_{n,e} = 0$

Incidence Matrix K

(9)

Gradient of Degree Function

(10)

$$\nabla \cdot \nabla = KK^{\top} = L = \begin{bmatrix} 2 & -1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ -1 & -1 & 4 & -1 & -1 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1 \end{bmatrix}$$
(11)
$$L = D - A$$
(12)

(where D is the degree matrix and A is the adjacency matrix)

Graph Divergence

(13)

Divergence and Smoothness

(14)

Divergence and Smoothness

(15)

Physics	Graphs
Potential: V	Vertex function: f
∇	K: incidence matrix
∇V : field	$K^{ op}f$: graph gradient
$ abla^2$: Laplacian	$KK^ op$ Graph Laplacian
$ abla^2 V$: Laplacian of V	$KK^{\top}f$: Graph Laplacian of f

What's the connection to the Laplacian operator?

$$\nabla^2 g = \lambda g \tag{16}$$

for

$$g = e^{2\pi i \zeta t} \tag{17}$$

$$-\nabla^2 e^{2\pi i\zeta t} = -\frac{\partial^2}{\partial t^2} e^{2\pi i\zeta t} = (2\pi\zeta)^2 e^{2\pi i\zeta t}$$
(18)

I.e., the Fourier transform = inner product of a function and an eigenfunction of the Laplacian.

With our fancy new Fourier basis and the convolution theorem we can define graph convolution:

$$\mathbf{x} * \mathbf{g} = \mathcal{F}^{-1} \{ \mathcal{F} \{ \mathbf{x} \} \cdot \mathcal{F} \{ \mathbf{g} \} \}$$
(19)

$$= \mathcal{F}^{-1}\{\hat{\mathbf{x}} \cdot \hat{\mathbf{g}}\}$$
(20)

$$= \mathcal{F}^{-1} \{ \mathsf{U}^\top \mathsf{x} \odot \mathsf{U}^\top \mathsf{g} \}$$
(21)

$$= \mathsf{U}\left(\mathsf{U}^{\top}\mathsf{x}\odot\mathsf{U}^{\top}\mathsf{g}\right) \tag{22}$$

$$= Ug(\Lambda)Ux$$
(23)

Define our filter as:

$$\hat{g}_{ heta}(\Lambda) = \mathsf{diag}(\hat{g}_{ heta}(\lambda_0), ..., \hat{g}_{ heta}(\lambda_{n-1}))$$

I.e., g is visiting each frequency component λ_I and tweaking it somehow.

$$y = g * x = \mathcal{F}^{-1}\{\hat{g} \cdot \hat{x}\}$$
(24)

$$= \mathcal{F}^{-1}\{\hat{g}(\Lambda)\mathsf{U}^{\top}\mathsf{x}\}$$
(25)

$$= \mathsf{U}\hat{g}(\mathsf{\Lambda})\mathsf{U}^{\top}\mathsf{x} \tag{26}$$

$$= \hat{g}(\mathsf{L})\mathsf{x} \tag{27}$$

- Our generic spectral filter isn't spatially localized
- Hammond et al, 2011: "Wavelets on Graphs via Spectral Graph Theory" [4]
- Defined localized wavelet filters *and* used Chebyshev polynomials to approximate the Laplacian (sound familiar?)

• In general, frequency filtering like this:

$$\hat{f}_{out}(\lambda_I) = \hat{f}_{in}(\lambda_I)\hat{h}(\lambda_I)$$

is not localized whatsoever in the vertex domain

• A trick: use a polynomial filter like:

$$\hat{h}(\lambda_l) = \sum_{k=0}^{K-1} \theta_k \lambda_l^k$$

Some theoretical and intuitive reasons:

- Tl;dr: polynomial interpolation and Taylor series
- In a local area, think about the frequencies needed to approximate that area
- Basically same idea as Taylor Series, Fourier Series, etc.
- Also: close connection to Lagrange and Chebyshev polynomials (in fact, both of these are used to compute polynomial interpolation in practice)

Main goal: filter doesn't affect far away nodes. It turns out the Laplacian will help with this:

$$\begin{aligned}
\chi(i) &= \sum_{l=1}^{N-1} \hat{x}(\lambda_l) \hat{g}(\lambda_l) u_l(i) \\
&= \sum_{j=1}^{N} \chi(j) \sum_{k=0}^{K-1} \theta_k (\mathsf{L}^k)_{i,j} \end{aligned} (29)$$
(30)

Which is localized because $(L^k)_{i,j} = 0$ if nodes *i* and *j* are more than *K* hopes away from each other (in fact, this is a graph wavelet)

Written with matrices:

$$g_{\theta}(\Lambda) = \sum_{k=0}^{K-1} \theta_k \Lambda^k$$
(31)

Which when we apply to x, we get:

$$y = Ug_{\theta}(\Lambda)U^{\top}x$$
(32)

Need to compute

$$\mathsf{y} = \mathsf{U}g_{\theta}(\Lambda)\mathsf{U}^{ op}\mathsf{x}$$

which is $\mathcal{O}(n^2)$

Chebyshev Nets and GCNs

Basic idea: we can avoid using the explicit Laplacian Fourier basis by approximating it with Chebyshev polynomials:

$$g_{\theta}(\Lambda) = \sum_{k=0}^{K-1} \theta_k T_k(\Lambda^k)$$
(33)

• ChebyNets where we set k = 1 to create one layer:

$$g_{\theta}(\Lambda) = \theta_k T_k(\Lambda) \tag{34}$$

- Use augmented normalized L for numerical stability
- Full layer:

$$Y = \sigma(AXW) \tag{35}$$
Spectral Filters

References i

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

I. Daubechies.

The wavelet transform, time-frequency localization and signal analysis.

IEEE transactions on information theory, 36(5):961–1005, 1990.

M. Defferrard, X. Bresson, and P. Vandergheynst.

Convolutional neural networks on graphs with fast localized spectral filtering.

In Advances in neural information processing systems, pages 3844–3852, 2016.

References ii

D. K. Hammond, P. Vandergheynst, and R. Gribonval.
Wavelets on graphs via spectral graph theory.
Applied and Computational Harmonic Analysis, 30(2):129–150, 2011.

M. Henaff, J. Bruna, and Y. LeCun.

Deep convolutional networks on graph-structured data. *arXiv preprint arXiv:1506.05163*, 2015.

T. N. Kipf and M. Welling.

Semi-supervised classification with graph convolutional networks.

arXiv preprint arXiv:1609.02907, 2016.

References iii

- Y. LeCun, Y. Bengio, et al.

Convolutional networks for images, speech, and time series.

The handbook of brain theory and neural networks, 3361(10):1995, 1995.

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vanderghevnst.

The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains.

arXiv preprint arXiv:1211.0053, 2012.

P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio.

Graph attention networks.

arXiv preprint arXiv:1710.10903, 2017.