Scalable GNN Updates: More About PyTorch
Geometric (PyG)

May 1st, 2019

Derrick Blakely
University of Virginia

https://qdata.github.io/deep2Read/

https://qdata.github.io/deep2Read/

Table of contents

1. Introduction
2. Overview

3. Conclusions

Introduction

e GPUs work well on dense, repetitive data matrices where a single
instruction can be applied to lots of data at once (SIMD)

Graphs have irregular structures

Adjacency matrix rows are sparse and can require control flow

Samples vary in size

PyTorch doesn’t have a programming interface for GNNs

Provide sparse GPU acceleration by creating CUDA kernels for

COO-format matrices

Make mini-batching simple
e Create a PyTorch programming interface

e Give users a library of pre-implemented GNN algorithms

Overview

Graphs:

e G = (X, (I,E)) with X € RV*F and sparse adjacency tuple (I, E)
e | € N>*E encodes edge indices in coordinate (COO) format

o E € REXD holds D-dimensional edge features

Generalized neighborhood N aggregation:

k—+1 k+1 (

k K+1 [k _k
X = X Oienny @ (xS x5 i)

e Ujcari): a differentiable permutation invariant function (e.g.,
summation, mean, etc)

e ~ and ¢: differentiable functions (e.g., MLPs)

Working Example

. Edge
. . Edge Indices | Features E
Sparse Adjacency Matrix Fov o
A 0 1

N [N N e
o|lo|o|=~
o|lo|o|=~
o|lo|o|=~

Alalalala| -~

WIN|=~|]O|O
o|o|o|lw|N

Neighborhood Aggregation as Message Passing

Implement a GCN algo by subclassing the MessagePassing by defining:
e aggregate = [
e message = ¢(¥)()

e udpate = ~(K)()

MessagePassing Interface

MessagePassing class performs:

Gathers neighbors

Computes messages (using above definition)

Aggregates messages (using above)

Scatters messages

e Computes updates

Computing a GNN Layer with Message Passing

Figure 1: Computing a GNN layer using gather and scatter methods based on
edge indices |. Alternates between node-parallel and edge-parallel space.

Extending the MessagePassing class

class GCNConv(MessagePassing):
def __init__(self, in_channels, out_channels):
super(GCNConv, self).__init__(aggr-'add')
self.lin = torch.nn.Linear(in_channels, out_channels)

forward(self, x, edge_index):

edge_index = add_self_loops(edge_index, num_nodes=x.size(0))

X = self.lin(x)

self.propagate(edge_index, size=(x.size(@), x.size(@)), x=x)

message(self, x_j, edge_index, size):

row, col - edge_index

deg = degree(row, size[@], dtype-x_j.dtype)

deg_inv_sqrt = deg.pow(-0.5)

norm = deg_inv_sqrt[row] deg_inv_sqrt[col]
norm.view(-1, 1) x_j

def update(self, aggr_out):

aggr_out

Parallelization

e Their Gather-Apply-Scatter is not about parallelization; it’'s about
the programming interface

e Simple extension of PyTorch's DataParallel class

e Only supports data-parallelism (no graph-parallelism)

e Doesn't help if graphs are too large to fit in GPU memory

itertools chain
torch
torch_geometric.data Batch

class DataParallel(torch.nn.DataParallel):
def __init__(self, moc , device_ids=None, output_d e=None) :

iper(DataParallel, f).__init__(module, device_ids, output_device)
f.src_device = torch.device('cuda:{}".format(f.device_ids [@]))

def forward(self, data_list): e

def scatter(self, data_list, device_ids): =

10

Conclusions

e MessagePassing programming interface is very intuitive

e Achieves GPU acceleration with sparse CUDA kernels over COO
matrices

11

Weaknesses

Assumes entire graph can fit in memory

Doesn't partition graphs

Doesn't introduce computation graph optimizations (like NGra or

Only supports data-parallelism, which only works for graph
classification and doesn't work for large graphs

12

Lessons Learned

e The programming interfaces of NGra and PyG are pretty much the
same idea

e NGra is more cutting edge because it partitions graphs to avoid
OOM and uses ring-based streaming multi-GPU support

e Gather-Apply-Scatter has lots of potential for GNNs

e Still opportunity for accelerating GNNs with smart computation
graph partitioning and making improving parallelization

13

	Introduction
	Overview
	Conclusions

