
Scalable GNN Updates: More About PyTorch

Geometric (PyG)

May 1st, 2019

Derrick Blakely

University of Virginia

https://qdata.github.io/deep2Read/

https://qdata.github.io/deep2Read/


Table of contents

1. Introduction

2. Overview

3. Conclusions

1



Introduction



Motivation

• GPUs work well on dense, repetitive data matrices where a single

instruction can be applied to lots of data at once (SIMD)

• Graphs have irregular structures

• Adjacency matrix rows are sparse and can require control flow

• Samples vary in size

• PyTorch doesn’t have a programming interface for GNNs

2



Goal

• Provide sparse GPU acceleration by creating CUDA kernels for

COO-format matrices

• Make mini-batching simple

• Create a PyTorch programming interface

• Give users a library of pre-implemented GNN algorithms

3



Overview



Notation

Graphs:

• G = (X, (I,E)) with X ∈ RN×F and sparse adjacency tuple (I,E)

• I ∈ N2×E encodes edge indices in coordinate (COO) format

• E ∈ RE×D holds D-dimensional edge features

Generalized neighborhood N aggregation:

xk+1
i = γk+1

(
xki ,�j∈N (i)φ

k+1
(
xki , x

k
j , ei,j

))

• �j∈N (i): a differentiable permutation invariant function (e.g.,

summation, mean, etc)

• γ and φ: differentiable functions (e.g., MLPs)

4



Working Example

x1

x2
x4

x3

0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0

Sparse Adjacency Matrix 
A 0 1

0 2

0 3

1 0

2 0

3 0

Row Col

Edge Indices I

1

1

1

1

1

1

Edge 
Features E

5



Neighborhood Aggregation as Message Passing

Implement a GCN algo by subclassing the MessagePassing by defining:

• aggregate = �

• message = φ(k)()

• udpate = γ(k)()

6



MessagePassing Interface

MessagePassing class performs:

• Gathers neighbors

• Computes messages (using above definition)

• Aggregates messages (using above)

• Scatters messages

• Computes updates

7



Computing a GNN Layer with Message Passing

Figure 1: Computing a GNN layer using gather and scatter methods based on

edge indices I. Alternates between node-parallel and edge-parallel space.

8



Extending the MessagePassing class

9



Parallelization

• Their Gather-Apply-Scatter is not about parallelization; it’s about

the programming interface

• Simple extension of PyTorch’s DataParallel class

• Only supports data-parallelism (no graph-parallelism)

• Doesn’t help if graphs are too large to fit in GPU memory

10



Conclusions



Strengths

• MessagePassing programming interface is very intuitive

• Achieves GPU acceleration with sparse CUDA kernels over COO

matrices

11



Weaknesses

• Assumes entire graph can fit in memory

• Doesn’t partition graphs

• Doesn’t introduce computation graph optimizations (like NGra or

• Only supports data-parallelism, which only works for graph

classification and doesn’t work for large graphs

12



Lessons Learned

• The programming interfaces of NGra and PyG are pretty much the

same idea

• NGra is more cutting edge because it partitions graphs to avoid

OOM and uses ring-based streaming multi-GPU support

• Gather-Apply-Scatter has lots of potential for GNNs

• Still opportunity for accelerating GNNs with smart computation

graph partitioning and making improving parallelization

13


	Introduction
	Overview
	Conclusions

