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Introduction



Motivation

• GPUs work well on dense, repetitive data matrices where a single

instruction can be applied to lots of data at once (SIMD)

• Graphs have irregular structures

• Adjacency matrix rows are sparse and can require control flow

• Samples vary in size

• PyTorch doesn’t have a programming interface for GNNs
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Goal

• Provide sparse GPU acceleration by creating CUDA kernels for

COO-format matrices

• Make mini-batching simple

• Create a PyTorch programming interface

• Give users a library of pre-implemented GNN algorithms
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Overview



Notation

Graphs:

• G = (X, (I,E)) with X ∈ RN×F and sparse adjacency tuple (I,E)

• I ∈ N2×E encodes edge indices in coordinate (COO) format

• E ∈ RE×D holds D-dimensional edge features

Generalized neighborhood N aggregation:

xk+1
i = γk+1

(
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j , ei,j

))

• �j∈N (i): a differentiable permutation invariant function (e.g.,

summation, mean, etc)

• γ and φ: differentiable functions (e.g., MLPs)

4



Working Example
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Neighborhood Aggregation as Message Passing

Implement a GCN algo by subclassing the MessagePassing by defining:

• aggregate = �

• message = φ(k)()

• udpate = γ(k)()
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MessagePassing Interface

MessagePassing class performs:

• Gathers neighbors

• Computes messages (using above definition)

• Aggregates messages (using above)

• Scatters messages

• Computes updates
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Computing a GNN Layer with Message Passing

Figure 1: Computing a GNN layer using gather and scatter methods based on

edge indices I. Alternates between node-parallel and edge-parallel space.
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Extending the MessagePassing class
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Parallelization

• Their Gather-Apply-Scatter is not about parallelization; it’s about

the programming interface

• Simple extension of PyTorch’s DataParallel class

• Only supports data-parallelism (no graph-parallelism)

• Doesn’t help if graphs are too large to fit in GPU memory
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Conclusions



Strengths

• MessagePassing programming interface is very intuitive

• Achieves GPU acceleration with sparse CUDA kernels over COO

matrices
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Weaknesses

• Assumes entire graph can fit in memory

• Doesn’t partition graphs

• Doesn’t introduce computation graph optimizations (like NGra or

• Only supports data-parallelism, which only works for graph

classification and doesn’t work for large graphs
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Lessons Learned

• The programming interfaces of NGra and PyG are pretty much the

same idea

• NGra is more cutting edge because it partitions graphs to avoid

OOM and uses ring-based streaming multi-GPU support

• Gather-Apply-Scatter has lots of potential for GNNs

• Still opportunity for accelerating GNNs with smart computation

graph partitioning and making improving parallelization
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