PyTorch-BigGraph: A Large-Scale Graph Embedding System

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit Bose, Alex Peysakhovich [1] Facebook AI Research, SysML 2019

Presenter: Derrick Blakely

May 13, 2019

University of Virginia

https://qdata.github.io/deep2Read/

- 1. Introduction
- 2. Graph Embedding Model
- 3. PBG System
- 4. Experiments
- 5. Conclusion

Introduction

Relationship Graphs

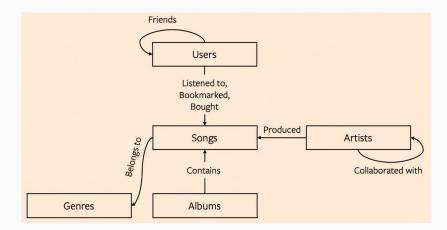


Figure 1: A graph with entities (users, songs, etc) connected by relations (listened to, is friends with, etc.).

- Embedding: learned map from entities to vectors that encode similarity between entities
- $\bullet~\mbox{Word}$ embeddings: word $\rightarrow~\mbox{vector}$
- Graph embedding: node \rightarrow vector
- Intuition: connected nodes should be more similar than unconnected nodes
- Not the same GNNs

- Unsupervised
- Task-agnostic node representations
- Features can be used for downstream tasks
- Nearest neighbors are semantically meaningful

Graph Embedding Model

Graph G = (V, R, E)

- V: nodes aka entities
- R: relations
- *E*: edges; $e \in E = (s, r, d) = ($ source, relation, entity)

Score function for each edge:

- Vectors of parameters for each entity and relation type: $\theta_s, \theta_r, \theta_d$
- Score function $f(\theta_s, \theta_r, \theta_d)$

$$f(\theta_s, \theta_r, \theta_d) = sim\left(g_{(s)}(\theta_s, \theta_r), g_{(d)}(\theta_d, \theta_r)\right)$$

Composed of two parts:

- 1. Relation operator g: linear transformation, translation, complex multiplication
- 2. Similarity function sim: dot product or cosine similarity

Several Different Score Functions

Model	Scoring Function	Relation parameters	\mathcal{O}_{time}	\mathcal{O}_{space}
RESCAL (Nickel et al., 2011)	$e_s^T W_r e_o$	$W_r \in \mathbb{R}^{K^2}$	$O(K^2)$	$\mathcal{O}(K^2)$
TransE (Bordes et al., 2013b)	$ (e_s + w_r) - e_o _p$	$w_r \in \mathbb{R}^K$	$\mathcal{O}(K)$	$\mathcal{O}(K)$
NTN (Socher et al., 2013)	$u_r^T f(e_s W_r^{[1D]} e_o + V_r \begin{bmatrix} e_s \\ e_o \end{bmatrix} + b_r)$	$W_r \in \mathbb{R}^{K^2 D}, b_r \in \mathbb{R}^K$ $V_r \in \mathbb{R}^{2K D}, u_r \in \mathbb{R}^K$	$\mathcal{O}(K^2D)$	$\mathcal{O}(K^2D)$
DistMult (Yang et al., 2015)	$\langle w_r, e_s, e_o \rangle$	$w_r \in \mathbb{R}^K$	$\mathcal{O}(K)$	$\mathcal{O}(K)$
HolE (Nickel et al., 2016b)	$w_r^T(\mathcal{F}^{-1}[\overline{\mathcal{F}[e_s]} \odot \mathcal{F}[e_o]]))$	$w_r \in \mathbb{R}^K$	$\mathcal{O}(K \log K)$	$\mathcal{O}(K)$
ComplEx	$\operatorname{Re}(\langle w_r, e_s, \bar{e}_o \rangle)$	$w_r \in \mathbb{C}^K$	$\mathcal{O}(K)$	$\mathcal{O}(K)$

Figure 2: Score functions shown in "Complex Embeddings for Simple Link Prediction" [2]

Model	$\mathbf{g}(\mathbf{x}, \theta_{\mathbf{r}})$	$\mathbf{sim}(\mathbf{a},\mathbf{b})$
RESCAL	$A_r x$	< a, b >
TransE	$x + \theta_r$	cos(a, b)
DistMult	$x\odot \ heta_r$	< a, b >
ComplEx	$x\odot \ heta_r$	$Re\{< a, \bar{b}>\}$

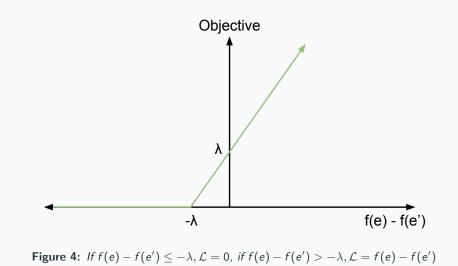
Figure 3: Score functions supported by PBG

Intuition: maximize $f(\cdot)$ for edges that exist and minimize $f(\cdot)$ for edges that don't exist.

 \implies Margin/hinge objective:

$$\mathcal{L} = \sum_{e \in \mathcal{G}} \sum_{e' \in S'_e} \max \left(f(e) - f(e') + \lambda, 0
ight)$$

- $f(e) = cos(\theta_s, \theta_r + \theta_d)$ score for an actual edge in the graph
- f(e') = cos(θ_s, θ_r + θ_d) score for an edge that isn't in the graph (aka, a negative sample)
- λ : margin hyperparameter
- Minimum value is 0



9

Constructing Negative Samples

Take a real edge and replace the source or destination with a random node.

$$egin{aligned} S'_e = \{(s',r,d) | s' \in V\} \cup \{(s,r,d') | d' \in V\} \ e' \leftarrow S'_e \end{aligned}$$

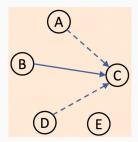
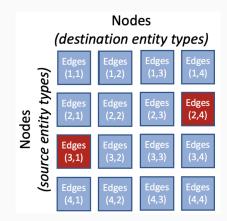


Figure 5: Creating a negative sample by replacing source *B* with either *A* or *D*, while leaving the relation unchanged.

PBG System

Partitioning

- Nodes divided in N shards; edges divided into N^2 buckets
- Single machine: 2 partitions used at a time; others swapped to disk
- Distributed training: buckets with disjoint partitions trained simultaneously



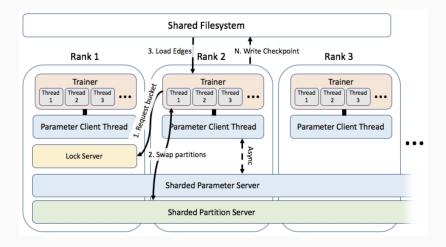
Two problems:

- 1. If you don't sample edges i.i.d, convergence is slower
- 2. Partitioning changes distribution of negative samples

Three types of communication need to happen:

- 1. Synchronizing bucket accesses
- 2. Exchanging partitions
- 3. Sharing common parameters

PBG System Overview



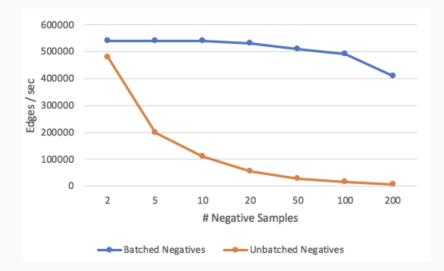
- 10-100 negative samples per real edge
- Training time dominated by negative samples
- Solution: corrupt a batch of 100 edges with the same set of random nodes

- 1. Reduce random-access memory bandwidth by a factor of 100
- 2. Use matrix multiplications to compute $f(\cdot)$

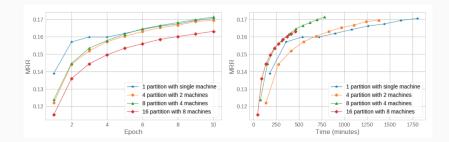
Experiments

- LiveJournal user-user interaction graph
- Twitter user-user interaction graph
- Youtube user-user interaction graph
- FreeBase Wikipedia knowledge graph

Negative Batching



# Parts	MRR	Hits@10	Time (h)	Mem (GB)	# Machines	# Parts	MRR	Hits@10	Time (h)	Mem (GB)
1	0.170	0.285	30	59.6	1	1	0.170	0.285	30	59.6
4	0.174	0.286	31	30.4	2	4	0.170	0.280	23	64.4
8	0.172	0.288	33	15.5	4	8	0.171	0.285	13	30.5
16	0.174	0.290	40	6.8	8	16	0.163	0.276	7.7	15.0



Conclusion

- Can handle very large graphs
- Good partitioning strategy
- Convincing experiments
- Probably actually works pretty well (FB uses it, lots of GitHub starts)

- Their partitioning causes embedding quality degradation
- Only intended for unsupervised graph embedding
- Doesn't benefit from GPUs (intended for CPU only)

•

A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose, and A. Peysakhovich.

Pytorch-biggraph: A large-scale graph embedding system. *arXiv preprint arXiv:1903.12287*, 2019.

T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard. **Complex embeddings for simple link prediction.**

In *International Conference on Machine Learning*, pages 2071–2080, 2016.