
Query-Reduction Networks for Question
Answering

M. Seo, S. Min, A. Farhadi, H. Hajishirzi

University of Washington
Seoul National University

Allen Institute for Artificial Intelligence

arXiv: 1606.04582

Reviewed by : Bill Zhang
University of Virginia

https://qdata.github.io/deep2Read/

https://qdata.github.io/deep2Read/


Outline

Introduction

Model

QRN Unit

Parallelization

Experiments

Conclusion

References



Introduction
Basic Premise and Motivation

I Want to address QA problem where multiple facts are required

I Examples of recent tasks are story-based QA and dialog tasks

I RNNs have inherently unstable long-term memory, making
them unsuitable for multi-hop reasoning; can use global
attention, but this doesn’t account for time step of sentences

I Propose Query-Reduction Network (QRN) which reduces
query to more informed queries over time

I Query = Where is the apple? ⇒ ”Sandra picked up the apple”
⇒ Query = Where is Sandra?

I Better encode locality information because it does not use
global memory access controller



Model Diagrams
QRN



Model Diagrams
Comparison



Model

I Given context (list of T sentences x1...xT ) and question q,
generate answer ŷ ; true answer is y

I Three stages: input module, QRN layers, output module

I Input module maps each sentence xi and q to Rd

I QRN layers generate predicted answer ŷ ∈ Rd using vectors
from input module

I Output module converts ŷ to natural language answer ŷ



QRN Unit

I QRN updates its hidden state (reduced query) through time
and layers

I Accepts 2 inputs (local query vector qt ∈ Rd and sentence
vector xt ∈ Rd); produces 2 outputs (reduced query vector
ht ∈ Rd and xt with no modification)

I Use update gate function α : Rd × Rd → [0, 1] and reduce
function ρ : Rd × Rd → Rd

I Update gate measures how relevant sentence is to query

I Reduce function produces reduced query



QRN Unit
Function Formulas

I Update gate similar to global attention mechanism, only uses
sigmoid on current memory slot, not entire memory (i.e. local
sigmoid attention)



QRN Unit

I Can stack QRN units (in earlier figure); let qk+1
t = hkt

I Incorporate bi-direction since sometimes query answers
depend on future sentences; use sum of both direction states

qk+1
t =

−→
h k

t +
←−
h k

t

I Take ŷ = hKt where K is number of QRN layers, then convert
to ŷ using output module



QRN Unit
Extensions

I Reset Gate: Function β : Rd × Rd → [0, 1] which allows
nullification of candidate query

I Vector Gate: Allow update and reset gates to be vectors
instead of scalars for more fine-controlled gating



Parallelization

I Can decompose equation 3 (ht = zt h̃t + (1 + zt)ht−1) into
computing over only candidate reduced queries (h̃t)) without
worrying about previous hidden state

I More details in paper



Experiments
Data and Model Details

I Tested on bAbI story-based QA, bAbI dialog, and DSTC2
(Task 6) dialog datasets

I For input module, use trainable embedding matrix A ∈ RdxV

to get d dimensional one-hot vector for each word in sentence
or query; then get sentence or query representation using
Postion Encoder (Weston et al., 2015)



Experiments
Data and Model Details

I For story-based QA output model, use V-way (V = size of
vocabulary) single layer softmax layer, then pick argmax word

I For dialog output model, use fixed number single-layer
softmax classifiers to sequentially output next word



Experiments
Results

I Compare with baselines and previous state-of-the-art models:
LSTM, End-to-end Memory Networks (N2N), Dynamic
Memory Networks (DMN+), Gated End-to-end Memory
Networks (GMemN2N), and Differentiable Neural Computer
(DNC)

I Also perform ablations with number of layers, reset gate, gate
vectorization, and dimension of hidden vector



Experiments
Table Results



Experiments
Ablation Analysis

I Model could not reason well when layers too low; harder to
train when layers too high

I Reset gate helps results

I Vector gates hurt for 1k dataset since model overfits or
converges to local minima

I Larger hidden size helps some cases



Experiments
More Observations

I Parallelization speeds up QRN on average by 6.2x

I Advantage of QRN is we can interpret intermediate queries
using decoder; can track how query changes

I Can also visualize reset and update gate magnitudes; low reset
gate magnitude r means candidate query from current
sentence is misrepresentative, low update gate magnitude z
means sentence irrelevant to query



Experiments
Magnitude Visualization



Conclusion

I Introduced QRNs for QA and dialog tasks which require
multi-hop reasoning

I Showed state-of-the-art performance for story-based QA and
dialog tasks

I QRN effectively handles time dependency and long-term
dependency problems present in attention mechanisms and
RNNs

I QRNs can be parallelized and address RNN’s vanishing
gradient problem



References

I https://arxiv.org/pdf/1606.04582.pdf

https://arxiv.org/pdf/1606.04582.pdf

	Introduction
	Model
	QRN Unit
	Parallelization
	Experiments
	Conclusion
	References

