Lagrange Optimization

Presenter: Zhe Wang https://qdata.github.io/deep2Read

Zhe Wang

201909

UVA (UVA) Qdata 201909 1/14

primal and dual problem

Primal optimization problem:

$$\min_{\mathbf{s.t.}} f_0(x)$$

$$\mathbf{s.t.} f_i(x) \leq 0, \quad i = 1, \dots, m$$
(1)

Equivalent form:

$$\min_{\substack{x \\ \lambda_i \geqslant 0}} \max_{f_0(x) + \lambda_i f_i(x)$$
 (2)

Dual problem:

$$\max_{\lambda_i \geqslant 0} \min_{x} f_0(x) + \lambda_i f_i(x) \tag{3}$$

We have:

$$p* = \min_{\substack{x \ \lambda_i \geqslant 0}} \max_{\substack{\lambda_i \geqslant 0}} f_0(x) + \lambda_i f_i(x) \geqslant \max_{\substack{\lambda_i \geqslant 0}} \min_{\substack{x \ x}} f_0(x) + \lambda_i f_i(x) = d^*$$

UVA (UVA) Qdata 201909 2 / 14

- The dual problem is always convex regardless of the convexity of the primal.
- If the equality holds for (x^*, λ_i^*) , the problem satisfies strong duality, (x^*, λ_i^*) are called saddle points.

Complementary Slackness

Suppose the strong duality holds for (x^*, λ_i^*) , we have:

$$\sum_{i=1}^{m} \lambda_i^* f_i(x^*) = 0$$

The property is known as complementary slackness.

UVA (UVA) Qdata 201909 3/14

KKT optimality conditions

Assume all functions f_0, \dots, f_m are differentiable.

Karush-Kuhn-Tucker conditions

Suppose the strong duality holds for (x^*, λ_i^*) , we have the following conditions:

- $f_i(x^*) \leq 0, i = 1, \dots, m$
- $\lambda_i^* \geqslant 0, i = 1, \cdots, m$
- $\lambda_i^* f_i(x^*) = 0, i = 1, \dots, m$
- $\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) = 0$

UVA (UVA) Qdata 201909 4/14

KKT conditions for convex problems

Main conclusion

If $f_i(x)$ are convex, $\hat{x}, \hat{\lambda}$ are points satisfy the KKT conditions, then the strong duality holds, and $(\hat{x}, \hat{\lambda})$ is a pair of saddle point.

UVA (UVA) Qdata 201909 5/14

Primal

$$\begin{aligned} \max_{p,d \in U} &< p, r > -\frac{1}{\eta} D(p||p_0) - \frac{1}{\alpha} H(d||d_0) \\ s.t. \quad & E^T d = \gamma P^T p + (1 - \gamma) \nu_0 \\ & \Phi^T d = \Phi^T p \end{aligned}$$

Lagrange form:

$$\mathcal{L}(p,d;V,\theta,\rho) = \langle p,r \rangle + \langle V,\gamma P^{\mathsf{T}}p + (1-\gamma)\nu_{0} - E^{\mathsf{T}}d \rangle + \langle \theta,\Phi^{\mathsf{T}}d - \Phi^{\mathsf{T}}p \rangle + \rho (1-\langle p,\mathbf{1}\rangle) - \frac{1}{\eta}D(p\|p_{0}) - \frac{1}{\alpha}H(d\|d_{0})$$

$$= \langle p,r + \gamma PV - \Phi\theta - \rho\mathbf{1}\rangle + \langle d,\Phi\theta - EV\rangle + (1-\gamma)\langle\nu_{0},V\rangle + \rho - \frac{1}{\eta}D(p\|p_{0}) - \frac{1}{\alpha}H(d\|d_{0})$$

$$= \langle p,\Delta_{\theta,V} - \rho\mathbf{1}\rangle + \langle d,Q_{\theta} - EV\rangle + (1-\gamma)\langle\nu_{0},V\rangle + \rho - \frac{1}{\eta}D(p\|p_{0}) - \frac{1}{\alpha}H(d\|d_{0}), \tag{13}$$

where $Q_{\theta} = \Phi \theta$, $\triangle_{\theta,V} = r + \gamma PV - Q_{\theta}$, the Lagrange form is a concave function of p and d.

4 D P 4 D P 4 E P 4 E P 5 C P 4 C P

UVA (UVA) Qdata 201909 6/14

Take the derivative w.r.t. p and d, we have:

$$p^*(x, a) = p_0(x, a) \exp^{\eta(\triangle_{\theta, V}(x, a) - \rho)}$$

$$\pi_d^*(x, a) = \pi_0(x, a) \exp^{\alpha(Q_{\theta}(x, a) - V(x))}$$

$$\rho^* = \log(\sum_{x, a} p_0(x, a) e^{\eta \triangle_{\theta, V}(x, a)})$$

Take the optimal values into the Lagrangian, we have:

$$L(p^*, d^*; V_{\theta}, \theta, \rho^*) = (1 - \gamma) < \nu_0, V > +\frac{1}{\eta} \log(\sum_{x, a} p_0(x, a) e^{\eta \triangle_{\theta, V}(x, a)})$$

$$\mathcal{L}(p,d;V,\theta,\rho) = \langle p,r \rangle + \langle V,\gamma P^{\mathsf{T}}p + (1-\gamma)\nu_{0} - E^{\mathsf{T}}d \rangle + \langle \theta,\Phi^{\mathsf{T}}d - \Phi^{\mathsf{T}}p \rangle + \rho (1-\langle p,\mathbf{1} \rangle) - \frac{1}{\eta}D(p||p_{0}) - \frac{1}{\alpha}H(d||d_{0})$$

$$= \langle p,r + \gamma PV - \Phi\theta - \rho\mathbf{1} \rangle + \langle d,\Phi\theta - EV \rangle + (1-\gamma)\langle \nu_{0},V \rangle + \rho - \frac{1}{\eta}D(p||p_{0}) - \frac{1}{\alpha}H(d||d_{0})$$

$$= \langle p,\Delta_{\theta,V} - \rho\mathbf{1} \rangle + \langle d,Q_{\theta} - EV \rangle + (1-\gamma)\langle \nu_{0},V \rangle + \rho - \frac{1}{\eta}D(p||p_{0}) - \frac{1}{\alpha}H(d||d_{0}), \tag{13}$$

UVA (UVA) Qdata 201909 7 / 14

Primal

$$\begin{aligned} \max_{p,d \in U} &< p, r > -\frac{1}{\eta} D(p||p_0) - \frac{1}{\alpha} H(d||d_0) \\ s.t. \quad & E^T d = \gamma P^T p + (1 - \gamma) \nu_0 \\ & \Phi^T d = \Phi^T p \end{aligned}$$

Dual form:

Define the Q-function $Q_{\theta} = \Phi \theta$, the value function:

$$V_{\theta}(x) = \frac{1}{\alpha} \log(\sum_{a} \pi_{i}(x, a) e^{a_{\theta}(x, a)}),$$

and the Bellman error function $\triangle_{\theta} = r + \gamma PV_{\theta} - Q_{\theta}$. Then the optimal solution for the primal takes the form:

$$p^*(x,a) \propto p_0(x,a) e^{\eta \triangle_{\theta^*}(x,a)}$$

$$\pi_{d^*}(a|x) = \pi_0(a|x) e^{\alpha(Q_{\theta^*}(x,a) - V_{\theta^*}(x))}$$

 where θ^* is the minimizer of the convex function.

$$\mathcal{G}(\theta) = \frac{1}{\eta} \log(\sum_{x,a} p_0(x,a) e^{\eta \triangle_{\theta}(x,a)}) + (1-\gamma) < \nu_0, V_{\theta} > 0$$

By analogy with the classic logistic loss, the loss function is called logistic Bellman error, its solutions Q_{θ} and V_{θ} the logistic value functions.

Two advantages:

- The \mathcal{G} is convex.
- The $\mathcal G$ satisfies $||\nabla_Q \mathcal G(Q)||_1 \leqslant 2$

UVA (UVA) Qdata 201909 10 / 14

Q-REPS: a mirror-descent algorithm.

Suppose the feasible region is M, then the iterative optimization algorithm is :

$$(p_{k+1}, d_{k+1}) = \arg\max_{p,d \in M} \langle p, r \rangle - \frac{1}{\eta} D(p||p_K) - \frac{1}{\alpha} H(d||d_k)$$

Implementing requires the minimum θ_k^* of the logistic Bellman error function

$$\mathcal{G}(\theta) = \frac{1}{\eta} \log(\sum_{x,a} p_k(x,a) e^{\eta \triangle_{\theta}(x,a)}) + (1-\gamma) < \nu_0, V_{\theta} > 0$$

In practice, exact minimization can be often infeasible due to the lack of knowledge of the transition function P and limited access to computation and data.

UVA (UVA) Qdata 201909 11/14

To use the Q-REPS, the optimization should directly work with the sample transitions obtained through interaction with the env.

In each epoch k, we execute policy π_k and obtain a batch of N sample transitions $\{\epsilon_{k,n}\}_{n=1}^N$, with $\epsilon_{k,n}=(X_{k,n},A_{k,n},X_{k,n}')$ drawn from the occupancy measure p_k induced by π_k .

Furthermore, defining the empirical Bellman error for any (x, a, x) as:

$$\hat{\triangle}_{\theta}(x, a, x') = r(x, a) + \gamma V_{\theta}(x') - Q_{\theta}(x, a)$$

Then the empirical logistic Bellman error (ELBE) is defined as:

$$\hat{\mathcal{G}}_{k}(\theta) = \frac{1}{\eta} \log(\frac{1}{N} \sum_{n=1}^{N} e^{\eta \hat{\triangle}_{\theta}(\epsilon_{k,n})}) + (1 - \gamma) < \nu_{0}, V_{\theta} >$$

Variational method can be used to transform the distribution based target to sample based target.

Let D_N be the set of all probability distributions over [N] and define

$$S_k(\theta, z) = \sum_{z} z(n) (\hat{\triangle}_{\theta}(\epsilon_{k,n}) - \frac{1}{\eta} \log(Nz(n))) + (1 - \gamma) < \nu_0, V_{\theta} > 0$$

for each $z \in D_N$. we have :

$$\min_{\theta} \hat{\mathcal{G}}_k(\theta) = \min_{\theta} \max_{z \in D_N} S_k(\theta, z)$$

in each round $\tau=1,2,\cdots,T$, the sampler proposes a distributionz $Z_{k,\tau}\in D_N$ over sample transtions and the learner updates the parameters $\theta_{K,T}$

UVA (UVA) Qdata 201909 13/14

To optimize the θ ,

- sample an index I from the distribution $z_{k,\tau}$
- let $(X, A, X) = (X_{k,I}, A_{k,I}, X_{k,I})$
- sample a state \bar{X} and two actions A', \bar{A}

then, $\hat{g}_{k,t}(\theta) = \gamma \phi(X',A') - \phi(X,A) + (1-\gamma)\phi(\bar{X},\bar{A})$ is an unbiased estimation for the $\frac{\partial S}{\partial \theta}$. the introduced variable Z can also be optimized through gradient based method.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

UVA (UVA) Qdata 201909 14/14