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primal and dual problem

Primal optimization problem:
min  fo(x)
o (1)
st. fi(x)<0, i=1--- 'm
Equivalent form:
[ fc Aifi 2
D f{ee) 4 Aol (2)
Dual problem:
in ft ifi
fein o(x) + Aifi(x) (3)

We have:

— mi f \ifi(x) = in f \ifi(x) = d*
px=minmax fo(x) + Aifi(x) > maxmin fo(x) + Aif;(x)

i= =
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@ The dual problem is always convex regardless of the convexity of the

primal.

o If the equality holds for (x*, A¥), the problem satisfies strong duality,

(x*, A¥) are called saddle points.

Complementary Slackness

Suppose the strong duality holds for (x*, A¥), we have:
m
D AHi(x*) =0
i=1

The property is known as complementary slackness.
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KKT optimality conditions

Assume all functions fy, - - - , f,,; are differentiable.

Karush-Kuhn-Tucker conditions

Suppose the strong duality holds for (x*, \¥), we have the following
conditions:

o fi(x*)<0,i=1,---,m
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KKT conditions for convex problems

Main conclusion

If f;(x) are convex, £, \ are points satisfy the KKT conditions, then the
strong duality holds, and (X, A) is a pair of saddle point.
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Primal

max < p,r > —*D(PHPO) - *H(d||do)
p,deU

sit. ETd= 'yPTp + (1=
*Td=0Tp

Lagrange form:

L0 d5Y.0,9) = (5 + (Viy P+ (1= Y0 — B + (6,874 = 079) + p (1~ (5, 1)) — L Dlpln) — 3 H (o)
= (74 APV = 80 = p1) + (4,86 BV) + (1= ) v, V) + p = - Dlolo) — 2 H )

~ (5. By = p) + (&, Qo = BV) + (1=1) . V) + p = - Dloln) = ZH(d]do) (13)

where Qp = ®0,Ag v = r + yPV — @y, the Lagrange form is a concave
function of p and d.
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Take the derivative w.r.t. p and d, we have:

p*(x,a) = po(x,a) exp"(AG’V(Xya)—p)

Trj(xa a) = 7TO(X, a) expa(QG(X,a)*V(x))

p* = Iog(Z po(x, a)ePov(xa))
X,a

Take the optimal values into the Lagrangian, we have:

1
L(p*, d*; Vg, 0,p%) = (1—7) < 10,V > +=log (D po(x, a)e™0v(2)
n

x,a
£lp,d5Y,0.9) = (o1} + VP o+ (L= )0 = Ed) + (6,87d = 95) + p (1 = {p, 1) = =Dlplpo) — S Hdld)

= (5,74 YPY = 80 = p1) + (6 EV) + (1= ) v, V) + p = - Dlolo) — 2 H(d]do)

— (5, B0 = p) + (&, Qo — BV) + (1=1) (. V) + p— - Dloln) - SH(ddo) (13
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Primal

1 1
max < p.r > *%D(pllpo) —  H(dlldo)

st. ETd=~PTp+(1—7)w

*Td=0"p
Dual form:
Define the Q-function Qg = &0, the value function:

1
Vi (x) o Iog(z mi(x,a)e® (X’a)),
a

and the Bellman error function Ag = r + YyPVy — Qy. Then the optimal
solution for the primal takes the form:

p*(x, a)ocpg(x, a)ePox (2)

Tgx(a|x) = Wo(a]x)eo‘(oe* (x,3)= Vi (x))
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where 6* is the minimizer of the convex function.

G(9) = 717|og(2 po(x,a)e”0a)) L (1 — ) < vy, Vg >

x,a

By analogy with the classic logistic loss, the loss function is called logistic
Bellman error, its solutions @y and Vj the logistic value functions.
Two advantages:

@ The G is convex.
@ The G satisfies || VoG (Q)||1 <2
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Q-REPS: a mirror-descent algorithm.
Suppose the feasible region is M, then the iterative optimization algorithm
is :

1 1
diii) = _2D — ZH(d||d
(Pk+1s dk+1) arg max < p.r> p (pllPK) o (d||dk)

Implementing requires the minimum 60} of the logistic Bellman error
function

G(9) = ;Iog(z pi(x, @)y 4 (1 — ) < vp, Vy >

x,a

In practice, exact minimization can be often infeasible due to the lack of
knowledge of the transition function P and limited access to computation
and data.
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To use the Q-REPS, the optimization should directly work with the sample
transitions obtained through interaction with the env.

In each epoch k, we execute policy 7, and obtain a batch of N sample
transitions {ey ,,}n 1 with €x n = (Xi.n, Ax, ,,,X ,) drawn from the
occupancy measure py induced by 7.

Furthermore, defining the empirical Bellman error for any (x, a, x) as:

Ag(x, a,x') = r(x,a) + YVo(x') — Qu(x, a)

Then the empirical logistic Bellman error (ELBE) is defined as:

Gi(0) Iog Z eDolex, DY+ (1—7) <, Vo >
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Variational method can be used to transform the distribution based target
to sample based target.

Let Dy be the set of all probability distributions over [N] and define

Su(0,2) = 3 2(m) (Aglexn) — }7 log(Nz(n)) + (1~ ) < vo, Vi >

z

for each z € Dy. we have :

PN

min Gk(0) = min max Sk(0,z)

in each round 7 =1,2,---, T, the sampler proposes a distributionz
Zr € Dy over sample transtions and the learner updates the parameters
Ok, T
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To optimize the 6,

@ sample an index | from the distribution z ,

o let (X, A, X) = (X1, A1, Xi,1)

@ sample a state X and two actions A, A
then, gk +(0) = vo(X', A') — ¢(X, A) + (1 — 7)$(X, A) is an unbiased
estimation for the —. the introduced variable Z can also be optimized

through gradient based method.
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