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Setup

Task: Homogeneous, multi-source, few-shot, supervised domain
adaptation

multi-source: labeled data from multiple source domains are available

homogeneous: all source domains are in the same data space Rd

few-shot and supervised: in target domain, there are only a few
labeled data available

Background:
In most existing work, the assumptions are relied on the similarity or small
discrepancy of representation distributions PpΦpX qq, or conditional
distributions PpΦpX q|Y q,PpY |ΦpX qq.
These distribution based assumptions may not fit for transfer learning from
apparently different distributions.
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Assumption:
Sharing data generating mechanism (causal SEM) across different
domains.

Intuition:
Human cares about causal knowledge, because once discovered, it applies
to different systems.

Motivating Example:

Predict disease risk from medical records.

Data distribution varies for different lifestyle.

Common pathological mechanism across different regions.
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SEM

SEM: The joint distribution can be factorized into the product of
independent components.

PpX1,X2, ¨ ¨ ¨ ,Xnq “

n
ź

i“1

PpXi |papXi q

Where Si are independent variables.
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Moreover, if the causal graph is acyclic, then it can be further reduced to:

The assumption of the paper is this structural equation f is shared across
different domains.
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Setup

Notation:

input subspace X P RD´1,

Y P R,

As a result, the overall data space Z “ X ˆ Y P RD , each labeled
data is noted as Z “ pX ,Y q

the set of distributions on RD is noted as Q

Basic setup: pTar be a target distribution over Z, G is a hypothesis set
G Ă tg : RD´1 Ñ Ru, l : G ˆRD Ñ r0,Bl s be the loss function. The goal
is to find g P G such that Rpgq “ EpTar lpg ,Z q is minimized.
Also suppose we have labeled data from K distinct source distributions
tpku

K
k“1 over Z, that is, we have iid samples Dk “ tZ

Src
k,i u

nk
i“1 „ pk
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Key assumption
There exists a set of D dimensional IC distributions qTar , qk P Q, and a
smooth, invertible function f : RD Ñ RD such that the data generation
mechanism can be modeled as a two-step process:

SSrc
k,i „ qk

ZSrc
k,i “ f pSSrc

k,i q

And similarly for target domain: Zi “ f pSi q, Si „ qTar .

Benefits:
Now, no constraint on the similarity of the distribution enable the model
to better accommodate intricate distribution shift.
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Algorithm

Algorithm:

Performing ICA on the labeled data from source domains to estimate
the shared transformation f̂ “ ICApD1, ¨ ¨ ¨ ,DK q

Using the learned f to extract IC of the target domains
ŝi “ f̂ ´1pZi q, i “ 1, 2, nTar

Data augmentation on the IC space, and get s̄i

Synthesize more target data samples: z̄i “ f̂ ps̄i q

fit the predictor with augmented data of the target domain.
g˚ “ arg min

gPG
lpg , z̄q
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Estimating f using source domain data:

Nonlinear ICA, specifically generalized contrastive learning(GCL), will be
used to estimate f , based on the identification of nonlinear ICA, an
auxiliary variable u also has to be observed. So the domain indices will be
used to train a binary classifier:
the classification task to be trained in GCL is

rf ,φpz , uq “
D
ÿ

d“1

ψdpf̂
´1pzqd , uq,

consisting of pf̂ , tψdu
D
d“1q, the classification task of GCL is logistic

regression to classify pZSrc
k , kq as positive and pZSrc

k , k 1 ‰ kq as negative.
domain contrastive learning criterion to estimate f :

arg min
f̂ ,tψdu

D
d“1

K
ÿ

k“1

1

nk

nk
ÿ

i“1

pφprf̂ ,ψpZ
Src
k,i , kqq ` Ek 1‰kφp´rf̂ ,ψppZ

Src
k,i , k

1qqqq
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Extract IC of the target domain:

ŝi “ f̂ ´1pZi q, |Zi | “ nTar

Inflate the target IC
|ŝ| “ nTar ,

where each ŝi is of D dimension, every two dimensions are
independent. To do augmentation, they inflate the set of IC values by
taking all dimension-wise combinations of the estimated IC.
Concretely, for each dimension, there are nTar choices, thus, the total
number of augmented data is nDTar
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Synthesis target data

z̄i “ f̂ ps̄i q, |z̄ | “ nDTar

Fit a predictor with augmented data

Rpgq “
1

nDTar

ÿ

i

lpg , Z̄ q ` λ||g ||2
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Experiment

Dataset
they use the gasoline consumption data, which is a panel data of gasoline
usage in 18 countries over 19 years. Each country is considered as a
domain.
The dataset contains four variables, and are widely-used for domain
adapting regression tasks, especially for multi-source transfer learning.
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Challenging common assumptions in the
unsupervised disentangled representations

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain
Gelly, Bernhard Schölkopf, Olivier Bachem

ETH Zurich, MaxPlanck Institute for Intelligent Systems, Google Brain
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The key idea behind the unsupervised learning of disentangled
representation is that real word is generated by a few explanatory factors
of variation.

Data generating process:

sample a multivariate latent random variable z from a distribution
Ppzq. Z corresponds to semantically meaningful factors of variation
of the observations.

The observation x is sampled from the conditional distribution Ppx|zq
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The goal of representation learning is to find rpxq, which satisfies:

contain all the information present in x in a compact and
interpretable structure,

being independent from the task at hand,

be useful for downstream tasks,

enable to preform interventions and to answer counterfactual
questions.

Learning of disentangled representations is an important step towards the
goal.
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This is no single formalized definition of disentanglement, the key intuition
is that a disentangled representation should separate the distinct
informative factors of variations in the data.
State-of-the-art approaches for unsupervised disentanglement learning are
based on VAE:

Assumptions of VAE:

A specific prior PpZq,

use a DNN to parameterize the conditional probability Ppx|zq,

the posterior is approximated by Qpz|xq

The common theme is to enforce a factorized aggregated posterior
ş

x Qpz|xqPpxqdx
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In a similar spirit to disentanglement, ICA studies the problem of
recovering independent components of a signal.
And the identification problem in ICA is a special case of disentanglement
representation learning.

University of Virginia (UVA) Qdata 201909 20 / 46



What is unsupervised disentanglement learning?

A change in a single ground-truth factor should lead to a single change in
the representation.

Whether unsupervised disentanglement learning is possible?

z and f pzq are completely entangled and they have the same marginal
distributions.
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Conclusion: without inductive biases both on models and data sets,
unsupervised disentanglement learning is impossible for arbitrary
generative model with a factorized prior.

Assume we have ppzq and some Ppx |zq defining a generative model.

Consider any unsupervised disentanglement method and assume that
it finds a representation rpxq that is perfectly disentangled with
respect to z in the generative model.

Theorem 1 implies that there is an equivalent generative model with
the latent variable ẑ “ f pzq where ẑ is completely entangled with
respect to z and thus also rpxq.

since f is deterministic and ppzq “ ppẑq almost everywhere, both
generative models have the same marginal distribution of the
observations x by ppxq “

ş

ppx |zqppzqdz “
ş

ppx |ẑqppẑqdz

Since the (unsupervised) disentanglement method only has access to
observations x , it hence cannot distinguish between the two equivalent
generative models and thus has to be entangled to at least one of them.
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As a concrete example:
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In causality and ICA literature:

After observing x , we can construct infinitely many generative models
which have the same marginal distribution of x . Any one of these models
could be the true causal generative model for the data, and the right
model cannot be identified given only the distribution of x
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In practice:

The theorem shows that unsupervised disentanglement learning is
fundamentally impossible for arbitrary generative models, this does
not necessarily mean it is an impossible endeavour in practice.

After all, real world generative models may have a certain structure
that could be exploited through suitably chosen inductive biases.

Theorem clearly shows that inductive biases are required both for the
models (so that we find a specific set of solutions) and for the data
sets (such that these solutions match the true generative model)

Inductive biases: the strength of regularization strength, the choice of
neural architecture, different random seed.
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Results 1:

Implication:
The considered methods are effective at enforcing an aggregated posterior
whose individual dimensions are not correlated but that this does not seem
to imply that the dimensions of the mean representation (usually used for
representation) are uncorrelated.
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Results 2: how disentanglement is affected by the model choice, the
hyperparameter selection and randomness?

Implication:
The disentanglement scores of unsupervised models are heavily influenced
by randomness (in the form of the random seed) and the choice of the
hyperparameter (in the form of the regularization strength).
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Results 3: Are these disentangled representations useful for downstream
tasks in terms of the sample complexity of learning?

Implication:
There is no clear evidence that disentangled representations will be useful
for downstream tasks, but there are many more potential notions of
usefulness such as interpretability and fairness that we have not considered
in our experimental evaluation.
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Suggestions:

The role of inductive biases and implicit and explicit supervision
should be made explicit: unsupervised model selection persists as a
key question.

The concrete practical benefits of enforcing a specific notion of
disentanglement of the learned representations should be
demonstrated.

Experiments should be conducted in a reproducible experimental
setup on data sets of varying degrees of difficulty.
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Continuously indexed domain adaptation

Hao Wang, Hao He, Dina Katabi

MIT CSAIL
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Motivation:
Existing domain adaptation focus on transferring knowledge between
domains with categorical indices: such as AÑ B, or if multi-source
domains are available, then the domain adaptation is between
A1,A2, ¨ ¨ ¨ ,An Ñ B
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For example, the most frequently used two datasets for domain adaptation
are MNIST and SVHN, either adpating from MNIST to SVHN or adapting
from SVHN to MNIST.
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There are many tasks involve continuous indexed domains.
Motivating Example 1:
In medical applications, one needs to do transfer learning across patients
of different ages.

Motivating Example 2:
Underwater robots have to operate at different water depths and viscosity,
and one expects that adaptation across datasets from different depths or
viscosity (e.g., lake vs. sea) should take into account the relationship
between the robot operation and the physical properties of the liquid in
which it operates.
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A direct method is treating the age of the source and target domain as
domain labels, but this is unlikely to yield the optimal result, since it
doesn’t consider the distance between different domains.
In other word, if the distance of domain indices are close dpu1, u2q, the
joint distributions Ppyu1 , xu1q,Ppyu2 , xu2q are also similar.

How do existing methods work?

The role of discriminator: binary classifier determines whether the data
comes from source domain 1, or from target domain 0.
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Setup

Task: unsupervised domain adaption, which means we only have labeled
data in the source domain and unlabeled data in the target domain.

We have a set of continuous domain indices: U “ Us Y Ut , also U is a
metric space.

In source domains whose indices are usi P Us , we have labeled data
tpx si , y

s
i , u

s
i qu

n
i“1

In target domains whose indices are uti P Ut , we have unlabeled data
tpx ti , u

t
i qu

m
i“1, the goal is to predict tpy ti qu

m
i“1 for data in the target

domains.

University of Virginia (UVA) Qdata 201909 35 / 46



Proposed method

Main idea: Learn an encoder E and predictor F such that distribution of
encoding z “ E px , uq from all domains U are aligned.
Formally, domain invariant encodings require that

ppz |u1q “ ppz |u2q or ppu1|zq “ ppu2|zq,@u1, u2 P U ,

this is achieved with the help of a discriminator D.
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In continuously indexed domains, there is an underlying assumption,
similar domain indices implies similar encoding.
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CIDA

In vanilla CIDA, the discriminator D is designed to regress the domain
index.

University of Virginia (UVA) Qdata 201909 38 / 46



Probabilisitc CIDA

Challenges for vanilla CIDA:

It is only able to match the expectation which is the first order moments.
In order to match both mean and variance of the distributions ppu|zq, they
propose a variant called Probabilistic CIDA.
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Probabilistic CIDA

In probabilistic CIDA, the discriminator predicts the distribution of ppu|zq
instead of providing point estimation, specifically, it outputs both the
mean and covariance of ppu|zq as Dµpzq and Dσ2pzq

the loss function of the D:

LdpDpzq, uq “
pDµpzq ´ uq

2Dσ2pzq
`

1

2
logDσ2pzq
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Theoretical analysis

Informal statement:

CIDA converges, if and only if, the expectation of the domain index
Eru|zs is identical for any embedding z .

PCIDA converges, if and only if, the expectation and the variance of
the domain index Eru|zs and Vru|zs is identical for any embedding z .
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Results

simulated dataset 1
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Results

simulated dataset 2
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Rotating MNIST

The goal is to adapt from regular MNIST digits with mild rotation to
significantly rotated MNIST digits.
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Healthcare Dataset

They use three medical datasets, Sleep Heart Health Study (SHHS),
MultiEthnic Study of Atherosclerosis (MESA) and Study of Osteoporotic
Fractures (SOF). Each dataset contains full-night breathing signals of
subjects and the corresponding sleep stage labels (‘Awake’, ’Light Sleep’,
‘Deep Sleep’, and ‘Rapid Eye Movement (REM)’).
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Intra-Dataset Adaptaion

Intra-dataset adaptation

Cross-dataset adaptation
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