Domain adaptation and counterfactual prediction Presenter: Zhe Wang https://qdata.github.io/deep2Read

Zhe Wang

201909

- Distance based
- Adversarial based
- Reconstruction based

Transfer Learning¹

Definition (Transfer Learning)

Given a source domain \mathcal{D}_S and learning task \mathcal{T}_S , a target domain \mathcal{D}_T and learning task \mathcal{T}_T , transfer learning aims to help improve the learning of the target predictive function $f_T(\cdot)$ in \mathcal{D}_T using the knowledge in \mathcal{D}_S and \mathcal{T}_S , where $\mathcal{D}_S \neq \mathcal{D}_T$, or $\mathcal{T}_S \neq \mathcal{T}_T$.

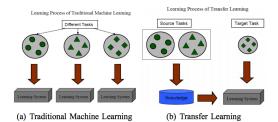
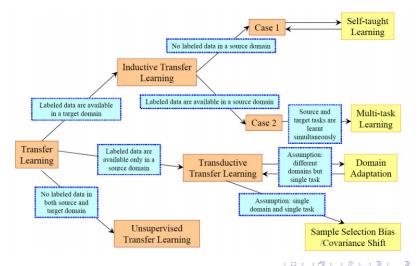


Fig. 1. Different Learning Processes between Traditional Machine Learning and Transfer Learning

¹A Survey on Transfer Learning, Pan and Yang, IEEE TKDE, 2009 = > < =

Category of transfer learning

Determined by the availability of labels, the relationship between D_S and D_T , T_S and T_T , transfer learning can be categorized as follows:



Domain Adaptation²

Setting:

- A set of labeled data $\{x_s, y_s\}_{s=1}^m$ from the source domain \mathcal{D}_S ,
- A set of unlabeled data $\{x_t\}_{t=1}^n$ from the target domain \mathcal{D}_T ,
- The source domain and the target domain share the same task, i.e. $\mathcal{T}_S = \mathcal{T}_T.$

Why we need the DA?

Deep model trained on one dataset may have infinite error bound on another similar dataset.

Based on the results of [Yosinski, et.al, NeurIPS2014]:

- In shallow convolutional layers can learn generic features that tend to be transferable in shallow layers.
- In middle layers, features are slightly domain-biased, and the transferability drops.
- In deep layers, features are more task or domain specific and are not safely transferable to novel tasks.

²Deep Visual Domain Adaptation: A Survey, Wang and Deng NeuralComputing University of Virginia (UVA) Qdata 201909 5/29

Methods:

- Discrepancy based
- Adversarial based
- Reconstruction based

Main idea:

Learn features that are both **predictive** and **invariant** across different domains.

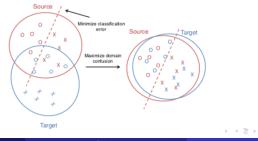
Discrepancy based³

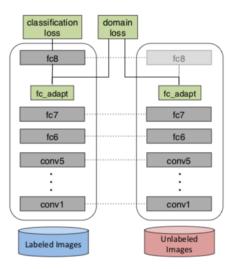
In the paper, maximum mean discrepancy(MMD) is used to measure the discrepancy of two distributions. MMD:

$$MMD(P_x, P_y) = ||\frac{1}{|x_i|} \sum_{x_i \in P_x} \phi(x_i) - \frac{1}{|x_j|} \sum_{x_j \in P_y} \phi(x_j)||$$

Motivation

Using the MMD as a regularization to find the invariant features which are also predictive.



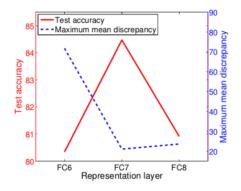


Where to insert the MMD regularization?

Starting from a pretrained model (such as AlexNet trained on ImageNet), find the layer has the smallest MMD on $\mathcal{D}_S, \mathcal{D}_t$. Insert the regularization there.

Loss function:

$$L = L_c(X_s, Y_s) + \lambda MMD^2(X_s, X_t)$$

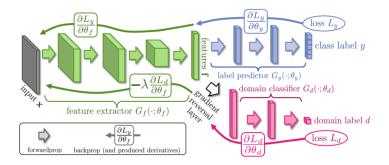


Main idea: Adding a classifier to distinguish data from two domains.

Three modules:

Feature extractor: $G_f(\cdot, \theta_f)$, label predictor: $G_y(\cdot, \theta_y)$ and domain classifier: $G_d(\cdot, \theta_d)$.

- For label predictor, the inputs are the features and labels from source domain, the goal is to correctly predict the labels.
- For domain classifier, the inputs are features from both source domain and target domain, the goal is to correctly distinguish two sets.
- For feature extractor, the goal is to 1) generate predictive features for source domain. 2) fool the domain classifier.



Energy function:

$$E(\theta_f, \theta_y, \theta_d) = L_y(G_y(G_f(x_s, \theta_f); \theta_y), y_s) - \lambda L_d(G_d(G_f(x; \theta_f); \theta_d), y_d)$$

Based on the idea, energy function is optimized to seek the saddle point:

$$\hat{\theta}_{f}, \hat{\theta}_{y}) = \arg\min_{\theta_{f}, \theta_{y}} E(\theta_{f}, \theta_{y}, \hat{\theta}_{d})$$

$$\hat{\theta}_{d} = \arg\max_{d} E(\hat{\theta}_{f}, \hat{\theta}_{y}, \theta_{d})$$
(1)

If gradient descent based optimizer is used:

$$\theta_{f} \leftarrow \theta_{f} - \mu \left(\frac{\partial L_{y}}{\partial \theta_{f}} - \lambda \frac{\partial L_{d}}{\partial \theta_{f}}\right)$$

$$\theta_{y} \leftarrow \theta_{y} - \mu \frac{\partial L_{y}}{\theta_{y}}$$

$$\theta_{d} \leftarrow \theta_{d} - \mu \frac{\partial L_{d}}{\theta_{d}}$$
(2)

To avoid training different module alternatively, a new layer called **gradient reversal layer**(GRL) is defined as:

$$GRL.forward(x) = x, GRL.backward(\frac{dI}{dx}) = \frac{dI}{dx}(-\lambda I)$$

The new loss function is:

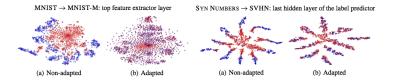
 $E(\theta_f, \theta_y, \theta_d) = L_y(G_y(G_f(x_s, \theta_f); \theta_y), y_s) + \lambda L_d(G_d(GRL(G_f(x; \theta_f)); \theta_d), y_d)$

Now, all parameters can be jointly trained with gradient descent.

イロト イヨト イヨト ・

Experiment results

METHOD	Source Target	MNIST MNIST-M	Syn Numbers SVHN	SVHN MNIST	SYN SIGNS GTSRB
SOURCE ONLY		.5225	.8674	.5490	.7900
SA (FERNANDO ET AL., 2013)		.5690 (4.1%)	.8644 (-5.5%)	.5932 (9.9%)	.8165(12.7%)
PROPOSED APPROACH		.7666 (52.9%)	. 9109 (79.7%)	.7385 (42.6%)	.8865 (46.4%)
TRAIN ON TARGET	r	.9596	.9220	.9942	.9980



University of Virginia (UVA)

≣ ► ≣ ∽ ९ (201909 14 / 29

< □ > < □ > < □ > < □ > < □ >

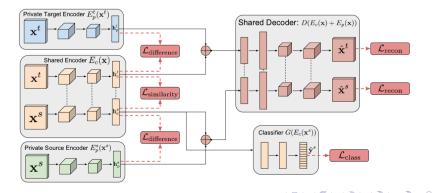
Motivation

- Shared representations are vulnerable to contamination by noise that is correlated with the underlying shared distribution
- There should be a subspace for each domain contains domain specific noise, and a common subspace contains shared features.
- The features in private subspace should be independent of features in common space.

Several modules:

Shared encoder $E_c(\cdot, \theta_c)$ as common feature extractor Private encoder $E_p^s(\cdot, \theta_{pt})$ as private feature extractor for \mathcal{D}_S , Private encoder $E_p^t(\cdot, p_s)$ as private feature extractor for \mathcal{D}_T , Shared decoder $D_c(E_c(x) + E_p(x), \theta_d)$ as a decoder.

Task-related module, such as classifier $G(\cdot, \theta_g)$.



Loss functions:

- for *L_{class}*, general cross entropy is used
- for *I_{recon}*, general L2 loss is used
- for *l_{difference}*, it measures the difference of common features and private features, to force the independence,

$$L_{diff} = ||(H_c^s)^T H_p^s||_F^2 + ||(H_c^t)^T H_p^t||_F^2$$

• for *l_{similarity}*, it can be set as a domain classifier with gradient reverse layer or a MMD module. For domain classifier, the loss is defined as:

$$L = \sum_{i=0}^{n_s+n_t} \{ d_i \log \hat{d}_i + (1-d_i) \log(1-\hat{d}_i) \}$$

The final loss is the linear combination of the four losses.

Model	MNIST to	Synth Digits to	SVHN to	Synth Signs to
	MNIST-M	SVHN	MNIST	GTSRB
Source-only	56.6 (52.2)	86.7 (86.7)	59.2 (54.9)	85.1 (79.0)
CORAL [26]	57.7	85.2	63.1	86.9
MMD [29, 17]	76.9	88.0	71.1	91.1
DANN [8]	77.4 (76.6)	90.3 (91.0)	70.7 (73.8)	92.9 (88.6)
DSN w/ MMD (ours)	80.5	88.5	72.2	92.6
DSN w/ DANN (ours)	83.2	91.2	82.7	93.1
Target-only	98.7	92.4	99.5	99.8

メロト メタトメ ヨトメ ヨ

Domain Adaptation

- Distance based
- Adversarial based
- Reconstruction based

What is a counterfactual problem?

Example 1: for a patient $x \in X$ the set T of interventions of interest might be two different treatments t = 0 or t = 1, and the set of outcomes might be Y = [0, 200] indicating blood sugar levels. But for each x, we only know the result of one treatment, for example $Y_{t=0}(x)$ and need to predict $Y_{t=1}(x)$.

Example 2: For an ad slot on a webpage x, the set of interventions T might be all possible ads on the inventory, and the potential result could be $Y = \{click, no - click\}$. Again, for each x we only know the result for one intervention $Y_{T=t_0}(x)$, and need to predict the remaining $Y_{T=t}(x)$

- Let *T* be the set of potential interventions or actions we are considering,
- X the set of contexts,
- and Y the set of possible outcomes,
- in this work, they only consider the binary action set T = 0, 1 corresponding to control group and treated group, respectively.
- For each context x ∈ X, the outcome of one of the two actions is observed.
- We refer to the observed outcomes as the factual outcome $y^F(x)$, and counterfactual outcome $y^{CF}(x)$ respectively.

Individualized treatment effect (ITE) for context x is defined as:

$$ITE(x) = Y_1(x) - Y_0(x)$$

Average treatment effect (ATE) is defined as:

$$ATE = E_{x \sim p(x)} [ITE(x)]$$

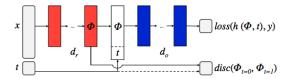
Suppose we have *n* observed samples $\{(x_i, t_i, y_i^F)\}$, where $y_i^F = t_i Y_1(x_i) + (1 - t_i) Y_0(x_i)$.

Note
$$\hat{P}^F = \{(x_i, t_i)\}_{i=1}^n$$
 and $\hat{P}^{CF} = \{(x_i, 1 - t_i)\}_{i=1}^n$

Generally, source domain \hat{P}^F is different from target domain \hat{P}^{CF} , thus it is a special case of domain adaptation.

The model contains two parts, the first part is a representation extractor $\Phi: X \to R^d$, the second part is a predictor $h: R^d \times T \to R$. The learned representation balances three objectives:

- enable low-error prediction on factual domain (source domain).
- enable low-error prediction on unobserved counterfactual domain.
- the distribution of treatment populations are similar. (the feature distribution from two domains are similar).



• The prediction loss on factual domain(source domain) is :

$$\frac{1}{n}\sum_{i=1}^{n}|h(\phi(x_i),t_i)-y_i^{\mathsf{F}}|$$

• The prediction loss on counter factual domain(target domain) can't be calculated directly, since y_i^{CF} is unknown. Let j(i) be the nearest neighbor of x_i among the group that received the opposite treatment from unit *i*, the prediction loss on counterfactual domain is approximated as:

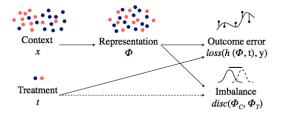
$$\frac{1}{n}\sum_{i=1}^{n}|h(\phi(x_i), 1-t_i) - y_{j(i)}^{F}|$$

• The discrepancy distance is noted as disc_H

The final loss is:

$$B_{H,\alpha,\gamma}(\phi,h) = \frac{1}{n} \sum_{i=1}^{n} |h(\phi(x_i), t_i) - y_i^F| + \frac{\gamma}{n} \sum_{i=1}^{n} |h(\phi(x_i), 1 - t_i) - y_{j(i)}^F| + \alpha disc_{\mathcal{H}}(\hat{P}^F, \hat{P}^{CF})$$

(3)



イロト イヨト イヨト イヨト

Algorithm:

Algorithm 1 Balancing counterfactual regression1: Input: $X, T, Y^F; \mathcal{H}, \mathcal{N}; \alpha, \gamma, \lambda$ 2: $\Phi^*, g^* = \underset{\Phi \in \mathcal{N}, g \in \mathcal{H}}{\operatorname{arg\,min}} B_{\mathcal{H}, \alpha, \gamma}(\Phi, g)$ (2)3: $h^* = \arg \min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n (h(\Phi, t_i) - y_i^F)^2 + \lambda ||h||_{\mathcal{H}}$ 4: Output: h^*, Φ^*

∃ ▶ ∢ ∃

Error bound

Assume

$$\hat{\beta}^{F}(\phi) = \arg\min_{\beta \in \mathcal{H}} L_{P_{\phi}^{F}}(\beta) + \lambda ||\beta||_{2}^{2}$$

$$\hat{\beta}^{CF}(\phi) = \arg\min_{\beta \in \mathcal{H}} L_{P_{\phi}^{CF}}(\beta) + \lambda ||\beta||_{2}^{2}$$
(4)

under some technique assumptions, for both $Q = P^F$, $Q = P^{CF}$ we have:

$$C(L_{Q}(\hat{\beta}^{F}(\phi)) - L_{Q}(\hat{\beta}^{CF}(\phi)))^{2} \leq disc_{\mathcal{H}}(\hat{\beta}^{F}(\phi), \hat{\beta}^{CF}(\phi)) +$$

$$\min_{h \in H} \frac{1}{n} \sum_{i=1}^{n} (|\hat{y}_{i}^{F}(\phi, h) - y_{i}^{F}| + |\hat{y}_{i}^{CF}(\phi, h) - y_{i}^{CF}|)$$

$$\leq disc_{\mathcal{H}}(\hat{\beta}^{F}(\phi), \hat{\beta}^{CF}(\phi)) +$$

$$(5)$$

$$\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{m} (|\hat{y}_{i}^{F}(\phi, h) - y_{i}^{F}| + |\hat{y}_{i}^{CF}(\phi, h) - y_{j(i)}^{F}|) + \frac{c_{1}}{n} \sum_{i:t_{i}=1}^{m} d_{i,j(i)}$$

イロト イポト イヨト イヨト

Table 1. IHDP. Results and standard errors for 1000 repeated experiments. (Lower is better.) Proposed methods: BLR, BNN-4-0 and BNN-2-2. † (Chipman et al., 2010) Table 2. News. Results and standard errors for 50 repeated experiments. (Lower is better.) Proposed methods: BLR, BNN-4-0 and BNN-2-2. † (Chipman et al., 2010)

	ϵ_{ITE}	ϵ_{ATE}	PEHE	
LINEAR OUTCOME				
OLS	4.6 ± 0.2	0.7 ± 0.0	5.8 ± 0.3	
DOUBLY ROBUST	3.0 ± 0.1	0.2 ± 0.0	5.7 ± 0.3	
LASSO + RIDGE	2.8 ± 0.1	0.2 ± 0.0	5.7 ± 0.2	
BLR	2.8 ± 0.1	0.2 ± 0.0	5.7 ± 0.3	
BNN-4-0	3.0 ± 0.0	0.3 ± 0.0	5.6 ± 0.3	
NON-LINEAR OUTCOME				
NN-4	2.0 ± 0.0	0.5 ± 0.0	1.9 ± 0.1	
BART [†]	2.1 ± 0.2	0.2 ± 0.0	1.7 ± 0.2	
BNN-2-2	1.7 ± 0.0	0.3 ± 0.0	1.6 ± 0.1	

	ϵ_{ITE}	ϵ_{ATE}	PEHE		
LINEAR OUTCOME					
OLS	3.1 ± 0.2	0.2 ± 0.0	3.3 ± 0.2		
DOUBLY ROBUST	3.1 ± 0.2	0.2 ± 0.0	3.3 ± 0.2		
LASSO + RIDGE	2.2 ± 0.1	0.6 ± 0.0	3.4 ± 0.2		
BLR	2.2 ± 0.1	0.6 ± 0.0	3.3 ± 0.2		
BNN-4-0	2.1 ± 0.0	0.3 ± 0.0	3.4 ± 0.2		
NON-LINEAR OUTCOME					
NN-4	2.8 ± 0.0	1.1 ± 0.0	3.8 ± 0.2		
BART [†]	5.8 ± 0.2	0.2 ± 0.0	3.2 ± 0.2		
BNN-2-2	2.0 ± 0.0	0.3 ± 0.0	2.0 ± 0.1		

< □ > < 同 > < 回 > < 回 > < 回 >