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Independent VS Uncorrelated

Independent VS uncorrelated:

Definition: Given two variables X and Y :

If E pX1,X2q “ E pX1qE pX2q, then X1,X2 are uncorrelated.

If PpX1,X2q “ PpX1qPpX2q, then X1,X2 are independent.

Properties: If X1,X2 are independent, X1,X2 are uncorrelated. If X1,X2

are all normal distributions, X1,X2 are uncorrelated iff X1,X2 are
independent.
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PCA and ICA

PCA and ICA are all inverse problem, and can be unified as:

X “ f pZ q,

where X is called observation.

The task is to recover Z given X .

Linear case: X “ AZ , where A P Rmˆp is called sampling matrix,
X P Rmˆn and Z P Rpˆn

PCA assumes tziu
p
i“1 are uncorrelated to each other, ICA assumes tziu

p
i“1

are independent to each other.

For Gaussian variables, ICA and PCA are equivalent.
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PCA

Goal: find some directions that data have largest variance.

Figure: PCA1

1from https://bit.ly/2Z1pyAb
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Pseudo Code for PCA

The pseudocode for computing PCA
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ICA example
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Identifiability of the ICA model

Theorem

Suppose X “ AZ , variables of Z are mutually independent, and at most
one of them is following the gaussian distribution, then Z can be recovered
up to an equivalent class of permutation and scaling.

In other words, if Ẑ “ BX , and variables of Ẑ are mutually independent,
then ẑi “ si ˚ zj .
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Pseudo Code for ICA

FastICA algorithm

Firstly, prewhitening the data, suppose data is X , and we use PCA to
project X on the new coordinate, such that after projection XTX “ I .

We want to find a direction w that can maximize the non-Gaussianity
of the projection wTX . The measure of the non-gaussianity of data
will rely on some nonlinear function g

w` “ E pXgpwTX qT q ´ E pg 1pwTX qqw

w “ w`{||w ||

some choices for g , gpuq “ ue´u
2{2, gpuq “ tanh u
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Nonlinear ICA and VAE

Suppose PpX ,Z q “ PθpX |Z qPθpZ q, where PθpZ q is the prior distribution
over latent variable.
The distribution PθpX |Z q, often parameterized as a neural network, is
called a decoder.
Observed distribution of data:

PpX q “

ż

Z
PpX ,Z qdZ

We then collect a dataset of observations of X :

D “ tx1, x2, ¨ ¨ ¨ , xNu,

where z i „ PθpZ q and x i „ PθpX |z
i q.
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VAE and nonlinear ICA2

VAE models learn the full data generation process
PθpZ q,PθpX |Z q,PθpZ |X q. All we know is PθpX q “ Pθ˚pX q, we don’t
know what the remaining are.

Goal: under what condition: PθpX q “ Pθ˚pX q can guarantee
PθpZ |X q “ Pθ˚pZ q,PθpX |Z q “ Pθ˚pX |Z q

Main Assumption: A conditionally factorized prior distribution over the
latent variables pθpz |uq, where u is an additionally observed variable
And the data generation stage is a additive noise model X “ f pZ q ` ε

PpZ |Uq is conditionally factorial

PpZ |Uq “ Πn
i“1PpZi |Uq,

we can always assume PpZi |Uq is sampled from exponential family.

2Ilyes Khemakhem, et.al, AISTATS2020
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Under some mild differentiable assumptions

PθpX q “ Pθ˚pX q Ñ pf ,T , λq fi pf ˚,T ˚, λ˚q.

If this is true, then it will be really powerful. It can show us the real data
generating process.

Connection to ICA, the joint distribution of latent variables are factorial,
which implies their mutual independence. Thus if f is linear then, this
process is linear ICA, and completeley identifiable.
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Experiments

Experiments on 2D dataset.
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Causal analysis

Consider data x “ px1, x2q. The goal is to establish if the causal direction
is x1 Ñ x2, or x2 Ñ x1.
Assume the data generation process is x1 “ f 1pn1q, x2 “ f 2px1, n2q
where f “ pf 1, f 2q is a (possibly nonlinear) mapping. Then, we can
recover the distribution of n1, n2. Then we can perform independence
analysis to find the causal direction.
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Summary:
Given an additional observable variable u, such as class labels and time
indices for times series data, we can discover the true latent distributions
ppzq, data generating process f px |zq and the inverse.

Limitations:
The dimension of latent variables is required as a prior knowledge.

Some recent work: Some recent results show if the true latent
distribution ppzq is multi-Gaussian, their encoder can better reconstruct
the latent distribution and discover the dimension of hidden space
automatically.
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Matrix Factorization

Singular Value Decomposition:

X “ UΣV T ,

where U contains the eigenvectors of XXT , and V contains the
eigenvectors of XTX , Σ is a diagonal matrix of the singular values. If X is
a real symmetric matrix, then:

X “ UΣUT ,

which is also called Eigenvalue Decomposition.
The i-th column of the matrix U is called the i-th principle component.
The first few principle components contains most information about X
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Both SVD and EIG are of great importance in spectral analysis or image
processing like segmentation and denoising.

In spectral analysis, the EIG is a powerful tool:
Given a graph G “ pV ,E q, the laplace matrix is defined as ∆ “ D ´ E .
Suppose:

∆ “ ΦΛΦT

Given a signal f “ pf1, f2, ¨ ¨ ¨ fnq
T , then the graph fourier transformation is

defined as:
f̂ “ ΦT f

For two signals f , g on the graph, the graph convolution is defined as:

f ˚ g “ ΦrΦT f d ΦTg s “ ΦDiagpĝ1, ĝ2, ĝnqf̂
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ChebNet

f ˚ g “ ΦrΦTg d ΦT f s “ ΦDiagpĝ1, ĝ2, ¨ ¨ ¨ , ĝnqf̂

How to parameterize the operation, so that it can be trained as a layer?
Spectral CNN3

k ˚ f “ ΦDiagpθ1, θ2, ¨ ¨ ¨ , θnqΦ
T f

ChebNet4

Since ∆ “ ΦΛΦT , the graph convolution kernel is defined as:

gθpΛq “
K´1
ÿ

j“0

θjTjpΛ̂q

where Λ̂ “
2

λmax
Λ´ I , TjpΛ̂q is chebshev polynomial, and

T0pΛ̂q “ I ,T1pΛ̂q “ Λ̂,Tj`1pΛ̂q “ 2Λ̂TjpΛ̂q ´ Tj´1pΛ̂q
3Joan Bruna, et.al, ICLR2014
4Michaël Defferrard, et,al NeurIPS2016University of Virginia (UVA) Qdata 201909 21 / 26



Now, the parameterized graph convolution can be calculated as:

k ˚ f “ Φ
K´1
ÿ

j“0

θjTjpΛ̂qΦ
T f “

K´1
ÿ

j“0

θjΦTjpΛ̂qΦ
T f

“

K´1
ÿ

j“0

θjTjpΦΛ̂ΦT qf

“

K´1
ÿ

j“0

θjTjp∆qf

No need to do SVD

only K ă n parameters to learn
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GCN

Later GCN5 was proposed: In GCN, set K “ 2, we have:

k ˚ f “ θ0f ` θ1D
´1{2AD´1{2f “ θpI ` D´1{2AD´1{2qf

In order to avoid gradient explosion, re-normalization trick will be used:

I ` D´1{2AD´1{2 Ñ D̂´1{2ÂD̂´1{2

where Â “ A` I .
Finally, generalize the update formula from vector to matrix, we have:

f “ D̂´1{2ÂD̂´1{2f θ

5Thomas N. Kipf et.al ICLR2017
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Low rank as prior knowledge

Low rank is an important prior knowledge in image processing:

arg min
X̂
||X ´ X̂ || ` λ||X̂ ||˚

A good solution can be found with SVD.
Low rank is also widely used in inverse problems:

arg min
1

2
||Y ´ XW ||2F ` λ||W ||˚

There are two methods to solve the inverse problem:

Proximal method

Wk`1 “ Dτ pWk ` λX
T pY ´ XWkqq
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Alternative optimization method

||W ||˚ “ min
U,V

1

2
||U||2F `

1

2
||V ||2F s.t.UV “W

where W P Rmˆn,U P Rmˆk ,V P U P Rkˆn.

arg min
1

2
||Y ´ X pUV q||2F ` λ1{2||U||

2
F ` λ2{2||V ||

2
F

Now, for each variable, there is a closed form solution, we can update
them alternatively, and the final W “ UV .
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