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Semi-Supervised Learning

Semi-Supervised Learning (SSL):
Learning from both labeled and unlabeled data.

@ Supervised Learning: Data sample {x;,y;j}7_;
@ Unsupervised Learning: Data sample {x;}7_;

o Semi-Supervised Learning: Data sample {x;, y;}]_; + {xj}/_y,u>>n

Different methods:
@ Optimization based
@ Regularization based (Entropy/Graph Reg.)
@ Representation based

@ Generative model based
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© Optimization based SSL
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MixUp

Limitations of ERM:
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2D Spiral Dataset 2D Hidden Rep.

Decision boundary is squiggly.
Low-confident region is rather narrow.
Decision boundary is too close to data samples

Wired arrangements of hidden rep.

Unseen data fall into confident region.
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Solution: Data Augmentation (Vicinal Risk Minimization)

Explain: Draw samples from vicinity of existing samples to enlarge dataset.

Example:

Demonstration of sample augmentations: rotation, gaussian noise, crop, hue and saturation adjustment,

elastic transform, coarse dropout

Limitation:
@ Data-dependent

@ Examples in the vicinity share the same class
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Extremely simple method: MixUp.
Generation of new data: Linear interpolation.

x=X1+(1-Nx
y=M+(1-Ny

# yl, y2 should be one-hot vectors
for (x1, vl1), (x2, y2) in zip(loaderl, loader2):
lam = numpy.random.beta(alpha, alpha)

x = Variable(lam * x1 + (1. - lam) * x2)

y = Variable(lam * yl1 + (1. = lam) * y2)
optimizer.zero_grad()
loss (net (x), y).backward()

optimizer.step/()

(a) One epoch of mixup training in PyTorch.
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Intuition behind:
Encourage model f to behave linearly in-between training examples. Linear
behaviors reduces the amount of undesirable oscillations on OOD samples.
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(a) Prediction errors in-between training data. Evalu-
ated at z = \z;+(1—\)x;, a prediction is counted as
a “miss” if it does not belong to {v;, y; }. The model
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trained with mixup has fewer misses.
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(b) Norm of the gradients of the model w.r.t. input
in-between training data, evaluated at z =
(1 = A)z;. The model trained with mixup has smaller
gradient norms.
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Experiments and ablation study

Different tasks on different datasets.
o classification on ImageNet, CIFAR-10 and CIFAR-100.
@ speech recognition on Google Command dataset
@ robustness against corrupted labels.
@ robustness against adversarial examples.
@ stabilization of GAN

Ablation study:
@ interpolate the latent representations.
@ interpolate only between the nearest neighbors.
@ between inputs of the same/different class
@ label smoothing
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Model Method Epochs  Top-1 Error  Top-5 Error

ResNet-50 ERM (Goyal et al., 2017) 90 23.5 -
mixup o = 0.2 90 23.3 6.6
ResNet-101 ERM (Goyal et al., 2017) 90 22.1 -
mixup o = 0.2 90 21.5 5.6
ResNeXt-101 32*4d  ERM (Xie et al., 2016) 100 21.2 -
ERM 90 21.2 5.6
mixup o = 0.4 90 20.7 5.3
ResNeXt-101 64*4d  ERM (Xie et al., 2016) 100 20.4 5.3
mixup o = 0.4 90 19.8 4.9
ResNet-50 ERM 200 23.6 7.0
mixup o = 0.2 200 221 6.1
ResNet-101 ERM 200 22.0 6.1
mixup o = 0.2 200 20.8 5.4
ResNeXt-101 32*4d  ERM 200 21.3 5.9
mixup o = 0.4 200 20.1 5.0

Table 1: Validation errors for ERM and mixup on the development set of ImageNet-2012.
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Label corruption Method

Test error Training error

Best Last Real Corrupted

ERM 127 16.6  0.05 0.28
20% ERM + dropout (p = 0.7) 8.8 104 526 83.55
mixup (o = 8) 5.9 6.4 227 86.32
mixup + dropout (o« = 4,p = 0.1) 6.2 6.2 1.92 85.02
ERM 188 446  0.26 0.64
50% ERM + dropout (p = 0.8) 14.1 155 12.71 86.98
mixup (o = 32) 11.3 127 584 85.71
mixup + dropout (0« = 8,p=0.3) 10.9 10.9 7.56 87.90
ERM 36.5 739  0.62 0.83
80% ERM + dropout (p = 0.8) 309 351 29.84 86.37
¢ mixup (o = 32) 25.3 309 1892 85.44
mixup + dropout (o = 8,p =0.3) 24.0 24.8 19.70 87.67
Table 2: Results on the corrupted label experiments for the best models.
Metric Method FGSM I-FGSM Metric Method FGSM I-FGSM
Top-1 ERM 90.7 99.9 Top-1 ERM 57.0 57.3
P mixup 75.2 99.6 P mixup 46.0 40.9
Ton-5 ERM 63.1 93.4 Ton-5 ERM 24.8 18.1
P mixup 49.1 95.8 P mixup 174 11.8
(a) White box attacks. (b) Black box attacks.

Table 3: Classification errors of ERM and mixup models when tested on adversarial examples.
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Method Specification Modified Weight decay
Input Target 107* 5x 107*
ERM X X 553 5.18
mixup AC +RP v v 424 4.68
AC + KNN v v 498 5.26
mix labels and latent ~ Layer 1 v v 4.4 4.51
representations Layer 2 v v 4.56 4.61
(AC +RP) Layer 3 v v 539 5.55
Layer 4 v v 595 5.43
Layer 5 v v 539 5.15
mix inputs only SC + KNN (Chawla et al., 2002) v X 545 5.52
AC + KNN v X 543 5.48
SC +RP 4 X 523 5.55
AC +RP v X 517 5.72
label smoothing € =0.05 X v 525 5.02
(Szegedy et al., 2016) €=0.1 X v 533 5.17
e=0.2 X v 534 5.06
mix inputs + e=0.05 v v 5.02 5.40
label smoothing e=0.1 v v 5.08 5.09
(AC +RP) e=0.2 v v 498 5.06
e=04 v v 525 5.39
add Gaussian noise o =0.05 4 X 553 5.04
to inputs oc=0.1 v X 641 5.86
=02 v X 716 7.24

Table 5: Results of the ablation studies on the CIFAR-10 dataset. Reported are the median test errors
of the last 10 epochs. A tick (v) means the component is different from standard ERM training,
whereas a cross (X) means it follows the standard training practice. AC: mix between all classes. SC:
mix within the same class. RP: mix between random pairs. KNN: mix between k-nearest neighbors
(k=200). Please refer to the text for details about the experiments and interpretations.
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Manifold MixUp

Direct extension of MixUp, play interpolation on hidden representations.

Algorithm:

For each batch, randomly sample a hidden layer k, do interpolation on
representation and final labels.

(8x, 9) = (Mixx(gx(x), g(X')), Mixa(y, y")) (2)
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Manfold MixUp

Singular Values of Representations
of a particular class at Layer 1

= Baseline (no mixing)
2 e INPUL Mixup
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Comparing with widely-used regularization:

Input Space

Hidden space

Weight Decay Noise Dropout Batch-Norm Input Mixup

University of Virginia Zhe Wang 201909



@ smooths decision boundaries that are further away from the training
data

flattens the class-representations
better generalization and lower test loss

increase performance at predicting data subject to novel deformations

robust to adversarial attacks
Theoretical guarantee:

Given some condition, with manifold MixUp, the representations will lie on
a low dimension subspace.
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Experiments

Table 1: Classification errors on (a) CIFAR-10 and (b) CIFAR-100. We include results from (Zhang
et al., 2018)f and (Guo et al., 2016)i. Standard deviations over five repetitions.

PreActResNet18 Test Error (%) Test NLL PreActResNet18 Test Error (%) Test NLL
No Mixup 4.83+£0.066 0.190+0.003  No Mixup 24.01 £0.376  1.189 £ 0.002
AdaMixi 3.52 NA  AdaMixi 20.97 n/a
Input Mixupt 4.20 NA  Input Mixupf 21.10 n/a
Input Mixup (o = 1) 3.8240.048 0.186+0.004  Input Mixup (a = 1) 22.11 £0.424  1.055 £ 0.006
Manifold Mixup (o =2)  2.954+0.046 0.137+0.003  Manifold Mixup (o = 2) 20.34 £0.525 0.912 +0.002
PreActResNet34 PreActResNet34

No Mixup 4.64+0.072  0.200 £0.002  No Mixup 23.55+0.399  1.189 £ 0.002
Input Mixup (o = 1) 2.88+£0.043 0.176 £0.002  Input Mixup (o = 1) 20.53 £0.330 1.039 £0.045
Manifold Mixup (o« = 2) 2.54+0.047 0.118 £0.002  Manifold Mixup (o« =2) 18.35 +0.360 0.877 +0.053
Wide-Resnet-28-10 Wide-Resnet-28-10

No Mixup 3.99+0.118  0.162£0.004  No Mixup 21.72£0.117  1.023 £ 0.004
Input Mixup (o = 1) 2.92£0.088 0.173£0.001  Input Mixup (o = 1) 18.89 £0.111  0.927 +0.031

Manifold Mixup (o =2)  2.55+0.024 0.111 +0.001 Manifold Mixup (o =2) 18.04+0.171  0.809 £ 0.005

(a) CIFAR-10 (b) CIFAR-100




Table 4: Test accuracy on novel deformations. All models trained on normal CIFAR-100.

Input Mixup  Input Mixup  Manifold Mixup

Deformation No Mixup (a=1) (a=2) (a=2)

Rotation U(—20°,20°) 52.96 55.55 56.48 60.08
Rotation U(—40°,40°) 33.82 37.73 36.78 42.13
Shearing U(—28.6°, 28.6°) 55.92 58.16 60.01 62.85
Shearing U(—57.3°, 57.3°) 35.66 39.34 39.7 44.27
Zoom In (60% rescale) 12.68 13.75 13.12 11.49
Zoom In (80% rescale) 47.95 52.18 50.47 52.70
Zoom Out (120% rescale) 43.18 60.02 61.62 63.59
Zoom Out (140% rescale) 19.34 41.81 42.02 45.29

Table 5: Test accuracy Manifold Mixup for dif-
ferent sets of eligible layers S on CIFAR.

S CIFAR-10 CIFAR-100 Table 6: Test accuracy (%) of Input Mixup and
Manifold Mixup for different o on CIFAR-10.

%81 }’}2} % ;zgg « Input Mixup Manifold Mixup
{0,1,2,3} 96.92 80.18 0.5 96.68 96.76
{1,2} 96.35 78.69 1.0 96.75 97.00
{0} 96.73 78.15 1.2 96.72 97.03
{1,2,3} 96.51 79.31 1.5 96.84 97.10
1 96.10 78.72 1.8 96.80 97.15
{2,3} 95.32 76.46 2.0 96.73 97.23
{2} 95.19 76.50

0 95.27 76.40
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Pseudo Label

Why unlabeled data can help?

One of the basic assumption for SSL:
In order to improve generalization performance, the decision boundary
should lie in low density regions.
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Minimizing the conditional entropy of class probabilities for unlabeled data.

Nk
H(y|x") = Z D P = Lixp)log (vs, = Lix;,) (3)
m=1c=1

Which means for each unlabeled data, the prediction have to be very
confident (close to 1-of-k).

Main idea: Pseudo-Label are target classes for unlabeled data as if they
were true labels.
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Generate pseudo labels for unlabeled data,

) = 1, if i =argmaxy fy(x!),
' 0, otherwise.

Objective function:

%Z (x0), yi +a—2/ (5)

The trade off a will be very important, people using annealing process to
graduate increase the value.
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Meta Pseudo Label

Objective for classification:

min Lce (0) = —Exvpla(y[x)log (po ()] (6)

@ In supervised learning, g(y|x) is one hot code
e In knowledge distillation, q(y|x) = qarge (y|x)

@ In SSL, for labeled data, g(y|x) is one hot code, but for unlabeled

data, q(y[x) = pemp(y|x)
o label smoothing
e temperature tuning

ple|x) = e—— 2 (7)
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Limitations:
@ The target distribution is fixed prior to model updating

@ The modulation of target distribution is data agnostic.

Solution: meta learning, simultaneously updating posterior and model
parameters.

Teacher-Student Interaction,

Training data Teacher Inference Pseudo-labeled data Supervised Learning Student
(x) (qu®) (%, 9w(x)) with Backprop (Pow)

Student
Lk (Yvat, Poce+n (Xval))

Updating the Student (pe):

Validation data
(Xval; ¥va1)

Compute Vy Log; Teacher
Use it to update qy. (qge+n)

Compute
Cross-Entropy

Updating the Teacher (qu):
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Labeled Data Labeled Data

Unlabeled Data Unlabeled Data

Student (t)

Student (t+1)

Teacher (t) Teacher (t+1)

Student (t+1) Teacher (t+1) Student (t+2) Teacher (t+2)
stept step t+1

Have to maintain two computational graph in the memory.

Unlabeled Data
Sl _ Small
Student(g _
Teacher (t) ent (t) Teacher (t+1) Student (t+1)

Small
Teacher (t+1)

Small
Teacher (t+2)

Student (t+1) Student (t+2)

stept step t+1
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Experiments

CIFAR-10 SVHN
Methods (4,000) (1,000)
Temporal Ensemble (2017)  83.63 £0.63  92.81 £ 0.27
Mean Teacher (2017) 84.13+0.28 94.35+0.47
VAT+EntMin (2018) 86.87£0.39 94.65 £ 0.19
LGA+VAT (2019) 87.94+£0.19 93.42+0.36
ICT (2019) 92.71+£0.02 96.11 £ 0.04
MixMatch (2019) 93.76 £0.06 96.73 £0.31
Supervised 82.14£0.25 88.17£0.47
Label Smoothing 82.21£0.18 89.39 £0.25
Supervised+MPL 83.71 £ 0.21 91.89 + 0.14
RandAugment (2019) 85.53+0.25 93.61 +0.06
RandAugment+MPL 87.55 £ 0.14 94.02 £ 0.05
UDA (2019a) 94.53 £0.18 97.11 £0.17
UDA+MPL 96.11 + 0.07  98.01 £ 0.07
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Figure 6: Top-1 accuracy of MPL and other methods on ImageNet-
10%. MPL surpasses UDA by almost 6% while being only 3%
below to training with all labels.

Methods CIFAR-10 SVHN ImageNet

Supervised 97.18 £0.08 98.17+0.03 84.49/97.18
NoisyStudent  98.22 +£0.05 98.71 £0.11 85.81/97.53

ReducedMPL  98.56 + 0.07 98.78 £ 0.07 86.87/98.11
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© Regularization based SSL
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Entropy Regularization

Require accuracy on labeled data, and consistency on unlabeled data.

labeled data unlabeled data

* *
) s
* *

arg ma Xfx) =y flaug,(x) = f(x;)
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Figure 1: Training objective for UDA, where M is a model that predicts a distribution of y given x.

RandAugment

Loss function
min Ex(—yilog po(91xi)) + ABxEs<aug () [KL(Ps(y1X)l[Po(y(X)]  (8)

where f is a copy of 6, with no gradient pass through.

University of Virginia (UVA) Zhe Wang 201909 30/37



careful choice of trade-off.

can do augmentation on either input or representations
highly depends on quality of data augmentation

state-of-the-art model outperforms fully supervised model.

(c) BERT arce; (d) BERTgneTuNE: BERT ARGE fine-tuned on in-domain unlabeled da[eﬁ Under
each of these four initialization schemes, we compare the performances with and without UDA.

Fully supervised baseline

Datasets IMDb Ye]8-2 YeIS-S Amazon-2  Amazon-5 DBpedia
(# Sup examples) (25k)  (560k)  (650k) (3.6m) (3m) (560k)
Pre-BERT SOTA 4.32 2.16 29.98 3.32 34.81 0.70
BERT L ArGE 4.51 1.89 29.32 2.63 34.17 0.64
Semi-supervised setting
G ne e IMDb  Yel Yelp-5 Amazon-2  Amazon-5 DBpedia
Initialization UDA | (20) 8> (2.5%) (20) (2.5k) (140)
X 4327  40.25 50.80 4539 55.70 41.14
Random v | 2523 833 4135 1616 1419 7.4
X 18.40 13.60 41.00 26.75 44.09 2.58
BERTAse v | 545 261 3380 3.96 3840 133
BERTAxc X |17 1085380 1ssh 4230 168
LARGE v 4.7 2.50 33.54 3.93 37.80 1.09
X 6.5 2.94 32.39 12.17 37.32 -
BERTeveroNe 77 | % des Bie 350 3712 B

Table 4: Error rates on text classification datasets. In the fully supervised settings, the pre-BERT SO-

TAs include ULMFIT (Howard & Ruder, 2018) for Yelp-2 and Yelp-

5, DPCNN (Johnson & Zhang,

2017) for Amazon-2 and Amazon-5, Mixed VAT (Sachan et al., 2018) for IMDb and DBPedia. All

of our experiments use a sequence length of 512.
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MixMatch = Aug + Consistency + Pseudo label + MixUp.

One-hot labeled data: {(xp, pp)}5_,, unlabeled data {up}2_;

Phase 1
o for labeled data xp, generate new samples (Xp, pp)

e for unlabeled data up, generate new k samples ({p x), send them into

C 1 .
the model get average prediction g, = p Zf;l Prmodel (¥ 0p,i)

® qp = sharpen(gp)
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Phase 2
° X = (ﬁbapb)gzl
o U = (dp, Qb)g’;il
o W = shuffle(cat(X, 1))
o X' = I\/IixUp(X;,W-)'E'l

3]
o U/ = MIXUP(UHW,JF‘XO'/ |1

1
Ly = ‘X’| Z H(p: pmodel(y | x@))
x,peX’
Ez,( L\U’ Z ”q pmodel(y ‘ Uus 6)”2
u,qeU’
L=Lx+ )\u[:u
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Graph Regularization

Adding graph regularization into loss function
L=Lo+ALwg, Lieg = ), Allf(x) = F()IPF = F(X)TAF(X),  (9)
iy

where A = D — A.

Nowadays, people prefer using GCN, which directly encode graph structure
into nn architecture.

HI*Y = o(D-Y2ADY2H W) (10)
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@ Generative model based SSL
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So far, we introduce some non parametric approach to do data
augmentation. We next introduce how to generate new data via a
parametric approach.

Another perspective: few shot learning. Variants of MAML require train
with limited data, but hallucination based data augmentation will generate
more data.
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Two objectives: good classifier, "well-generated” new samples.

Strain

Sample %
Noise z / \
g : gaug

train

(B, heron)

Inner loop: with augmented training set, find a good classifier. G is fixed.

Outer loop: G and h are trained jointly on dataset
(Xthy)7 (G(Z7Xtr)7y)7 (Xte;.y)
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