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Semi-Supervised Learning

Semi-Supervised Learning (SSL):
Learning from both labeled and unlabeled data.

Supervised Learning: Data sample txi , yiu
n
i“1

Unsupervised Learning: Data sample txiu
n
i“1

Semi-Supervised Learning: Data sample txi , yiu
n
i“1 ` txju

u
j“1, u ąą n

Different methods:

Optimization based

Regularization based (Entropy/Graph Reg.)

Representation based

Generative model based
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MixUp

Limitations of ERM:

Decision boundary is squiggly.

Low-confident region is rather narrow.

Decision boundary is too close to data samples

Wired arrangements of hidden rep.

Unseen data fall into confident region.
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Solution: Data Augmentation (Vicinal Risk Minimization)

Explain: Draw samples from vicinity of existing samples to enlarge dataset.

Example:

Limitation:

Data-dependent

Examples in the vicinity share the same class
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Mixup

Extremely simple method: MixUp.
Generation of new data: Linear interpolation.

x “ λx1 ` p1´ λqx2

y “ λy1 ` p1´ λqy2
(1)
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Intuition behind:
Encourage model f to behave linearly in-between training examples. Linear
behaviors reduces the amount of undesirable oscillations on OOD samples.

University of Virginia (UVA) Zhe Wang 201909 8 / 37



Experiments and ablation study

Different tasks on different datasets.

classification on ImageNet, CIFAR-10 and CIFAR-100.

speech recognition on Google Command dataset

robustness against corrupted labels.

robustness against adversarial examples.

stabilization of GAN

Ablation study:

interpolate the latent representations.

interpolate only between the nearest neighbors.

between inputs of the same/different class

label smoothing
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Manifold MixUp

Direct extension of MixUp, play interpolation on hidden representations.

Algorithm:

For each batch, randomly sample a hidden layer k , do interpolation on
representation and final labels.

pĝk , ŷq “ pMixλpgkpxq, gkpx
1qq,Mixλpy , y

1qq (2)
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Manfold MixUp
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Comparing with widely-used regularization:
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smooths decision boundaries that are further away from the training
data

flattens the class-representations

better generalization and lower test loss

increase performance at predicting data subject to novel deformations

robust to adversarial attacks

Theoretical guarantee:
Given some condition, with manifold MixUp, the representations will lie on
a low dimension subspace.
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Experiments
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Pseudo Label

Why unlabeled data can help?

One of the basic assumption for SSL:
In order to improve generalization performance, the decision boundary
should lie in low density regions.
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Minimizing the conditional entropy of class probabilities for unlabeled data.

Hpy |x 1q “ ´
1

N

N
ÿ

m“1

k
ÿ

c“1

ppy c
m “ 1|x 1mqlogpy c

m “ 1|x 1mq (3)

Which means for each unlabeled data, the prediction have to be very
confident (close to 1-of-k).

Main idea: Pseudo-Label are target classes for unlabeled data as if they
were true labels.
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Generate pseudo labels for unlabeled data,

y 1i “

#

1, if i “ arg maxi 1 fi 1px
1
i q,

0, otherwise.
(4)

Objective function:

L “
1

n

n
ÿ

i“1

lpf pxi q, yi q ` α
1

m

m
ÿ

i“1

lpf px 1i q, y
1
i q (5)

The trade off α will be very important, people using annealing process to
graduate increase the value.
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Meta Pseudo Label

Objective for classification:

min
θ

LCE pθq “ ´Ex„Drqpy |xqlogppθpŷ |xqs (6)

In supervised learning, qpy |xq is one hot code

In knowledge distillation, qpy |xq “ qlargepy |xq

In SSL, for labeled data, qpy |xq is one hot code, but for unlabeled
data, qpy |xq “ ptmppy |xq

label smoothing
temperature tuning

ppc |xq “
expplcpxq{τq

ř

c expplcpxq{τq
(7)
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Limitations:

The target distribution is fixed prior to model updating

The modulation of target distribution is data agnostic.

Solution: meta learning, simultaneously updating posterior and model
parameters.

Teacher-Student Interaction,
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Have to maintain two computational graph in the memory.

University of Virginia (UVA) Zhe Wang 201909 25 / 37



Experiments
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Entropy Regularization

Require accuracy on labeled data, and consistency on unlabeled data.
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Loss function

min
θ

Exp´yi log pθpŷ |xi qq ` λExEx̂„augpxqrKLppθ̂py |xq||pθpy |x̂qs (8)

where θ̂ is a copy of θ, with no gradient pass through.
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can do augmentation on either input or representations

highly depends on quality of data augmentation

careful choice of trade-off.

state-of-the-art model outperforms fully supervised model.
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MixMatch

MixMatch = Aug + Consistency + Pseudo label + MixUp.

One-hot labeled data: tpxb, pbqu
B
b“1, unlabeled data tubu

B
b“1

Phase 1

for labeled data xb, generate new samples px̂b, pbq

for unlabeled data ub, generate new k samples pûb,kq, send them into

the model get average prediction q̄b “
1

k

řk
i“1 Pmodelpy |ûb,i q

qb “ sharpenpq̄bq
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Phase 2

X̂ “ px̂b, pbq
B
b“1

Û “ pûb,k , qbq
B,K
b,k“1

W “ shufflepcatpX̂, Ûqq

X1 “ MixUppX̂i ,Wi q
|X̂|
i“1

U1 “ MixUppÛi ,Wi`|X̂|q
|Û|
i“1
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Graph Regularization

Adding graph regularization into loss function

L “ L0 ` λLreg , Lreg “
ÿ

i ,j

Aij ||f pxi q ´ f pxjq||
2 “ f pX qT∆f pX q, (9)

where ∆ “ D ´ A.
Nowadays, people prefer using GCN, which directly encode graph structure
into nn architecture.

H l`1 “ σpD̃´1{2ÃD̃1{2H lW lq (10)
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So far, we introduce some non parametric approach to do data
augmentation. We next introduce how to generate new data via a
parametric approach.

Another perspective: few shot learning. Variants of MAML require train
with limited data, but hallucination based data augmentation will generate
more data.
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Two objectives: good classifier, ”well-generated” new samples.

Inner loop: with augmented training set, find a good classifier. G is fixed.

Outer loop: G and h are trained jointly on dataset
pxtr , yq, pG pz , xtr q, yq, pxte , yq
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