Review on Semi-Supervised Learning Presenter: Zhe Wang https://qdata.github.io/deep2Read

Zhe Wang

201909

Definition and motivation

2 Optimization based SSL

3 Regularization based SSL

.

Semi-Supervised Learning (SSL):

Learning from both labeled and unlabeled data.

- Supervised Learning: Data sample $\{x_i, y_i\}_{i=1}^n$
- Unsupervised Learning: Data sample $\{x_i\}_{i=1}^n$
- Semi-Supervised Learning: Data sample $\{x_i, y_i\}_{i=1}^n + \{x_j\}_{i=1}^u, u >> n$

Different methods:

- Optimization based
- Regularization based (Entropy/Graph Reg.)
- Representation based
- Generative model based

Definition and motivation

Optimization based SSL

3 Regularization based SSL

★ ∃ ► ★

MixUp

Limitations of ERM:

- Decision boundary is squiggly.
- Low-confident region is rather narrow.
- Decision boundary is too close to data samples
- Wired arrangements of hidden rep.
- Unseen data fall into confident region.

Solution: Data Augmentation (Vicinal Risk Minimization)

Explain: Draw samples from vicinity of existing samples to enlarge dataset.

Example:

Demonstration of sample augmentations: rotation, gaussian noise, crop, hue and saturation adjustment, elastic transform, coarse dropout

Limitation:

- Data-dependent
- Examples in the vicinity share the same class

Mixup

Extremely simple method: MixUp. Generation of new data: Linear interpolation.

$$x = \lambda x_1 + (1 - \lambda) x_2$$

$$y = \lambda y_1 + (1 - \lambda) y_2$$

y1, y2 should be one-hot vectors
for (x1, y1), (x2, y2) in zip(loader1, loader2):
 lam = numpy.random.beta(alpha, alpha)
 x = Variable(lam * x1 + (1. - lam) * x2)
 y = Variable(lam * y1 + (1. - lam) * y2)
 optimizer.zero_grad()
 loss(net(x), y).backward()
 optimizer.step()

(a) One epoch of mixup training in PyTorch.

イロト 不得 トイヨト イヨト 二日

(1)

Intuition behind:

Encourage model f to behave linearly in-between training examples. Linear behaviors reduces the amount of undesirable oscillations on OOD samples.

(a) Prediction errors in-between training data. Evaluated at $x = \lambda x_i + (1-\lambda)x_j$, a prediction is counted as a "miss" if it does not belong to $\{y_i, y_j\}$. The model trained with *mixup* has fewer misses.

(b) Norm of the gradients of the model w.r.t. input in-between training data, evaluated at $x = \lambda x_i + (1 - \lambda)x_j$. The model trained with *mixup* has smaller gradient norms.

Different tasks on different datasets.

- classification on ImageNet, CIFAR-10 and CIFAR-100.
- speech recognition on Google Command dataset
- robustness against corrupted labels.
- robustness against adversarial examples.
- stabilization of GAN

Ablation study:

- interpolate the latent representations.
- interpolate only between the nearest neighbors.
- between inputs of the same/different class
- label smoothing

Model	Method	Epochs	Top-1 Error	Top-5 Error
ResNet-50	ERM (Goyal et al., 2017)	90	23.5	-
	mixup $\alpha = 0.2$	90	23.3	6.6
ResNet-101	ERM (Goyal et al., 2017)	90	22.1	-
	mixup $\alpha = 0.2$	90	21.5	5.6
ResNeXt-101 32*4d	ERM (Xie et al., 2016)	100	21.2	-
	ERM	90	21.2	5.6
	mixup $\alpha = 0.4$	90	20.7	5.3
ResNeXt-101 64*4d	ERM (Xie et al., 2016)	100	20.4	5.3
	mixup $\alpha = 0.4$	90	19.8	4.9
ResNet-50	ERM	200	23.6	7.0
	mixup $\alpha = 0.2$	200	22.1	6.1
ResNet-101	ERM	200	22.0	6.1
	mixup $\alpha = 0.2$	200	20.8	5.4
ResNeXt-101 32*4d	ERM	200	21.3	5.9
	mixup $\alpha = 0.4$	200	20.1	5.0

Table 1: Validation errors for ERM and mixup on the development set of ImageNet-2012.

Label corruption	Method		error	Traiı	Training error	
Eacor contaption		Best	Last	Real	Corrupted	
	ERM	12.7	16.6	0.05	0.28	
20%	ERM + dropout $(p = 0.7)$	8.8	10.4	5.26	83.55	
	mixup ($\alpha = 8$)	5.9	6.4	2.27	86.32	
	mixup + dropout ($\alpha = 4, p = 0.1$)	6.2	6.2	1.92	85.02	
	ERM	18.8	44.6	0.26	0.64	
50%	ERM + dropout (p = 0.8)	14.1	15.5	12.71	86.98	
	mixup ($\alpha = 32$)	11.3	12.7	5.84	85.71	
	mixup + dropout ($\alpha = 8, p = 0.3$)	10.9	10.9	7.56	87.90	
	ERM	36.5	73.9	0.62	0.83	
8007	ERM + dropout $(p = 0.8)$	30.9	35.1	29.84	86.37	
00%	mixup ($\alpha = 32$)	25.3	30.9	18.92	85.44	
	mixup + dropout ($\alpha = 8, p = 0.3$)	24.0	24.8	19.70	87.67	

Table 2: Results on the corrupted label experiments for the best models.

Metric	Method	FGSM	I-FGSM	Metric	Method	FGSM
Top-1	ERM mixup	90.7 75 .2	$99.9 \\ 99.6$	Top-1	ERM mixup	57.0 46.0
Top-5	ERM mixup	63.1 49 .1	$93.4 \\ 95.8$	Top-5	ERM mixup	24.8 17.4

(a) White box attacks.

(b) Black box attacks.

<ロト < 四ト < 三ト < 三ト

Table 3: Classification errors of ERM and mixup models when tested on adversarial examples.

Method Specification		Modified		Weight decay		
	-1	Input	Target	10^{-4}	$5 imes 10^{-4}$	
ERM		X	×	5.53	5.18	
mixup	AC + RP	1	1	4.24	4.68	
-	AC + KNN	~	1	4.98	5.26	
mix labels and latent	Layer 1	1	1	4.44	4.51	
representations	Layer 2	~	1	4.56	4.61	
(AC + RP)	Layer 3	1	1	5.39	5.55	
	Layer 4	~	1	5.95	5.43	
	Layer 5	~	1	5.39	5.15	
mix inputs only	SC + KNN (Chawla et al., 2002)	1	×	5.45	5.52	
	AC + KNN	1	X	5.43	5.48	
	SC + RP	1	X	5.23	5.55	
	AC + RP	~	×	5.17	5.72	
label smoothing	$\epsilon = 0.05$	×	1	5.25	5.02	
(Szegedy et al., 2016)	$\epsilon = 0.1$	X	1	5.33	5.17	
	$\epsilon = 0.2$	×	~	5.34	5.06	
mix inputs +	$\epsilon = 0.05$	1	1	5.02	5.40	
label smoothing	$\epsilon = 0.1$	~	1	5.08	5.09	
(AC + RP)	$\epsilon = 0.2$	1	1	4.98	5.06	
	$\epsilon = 0.4$	~	~	5.25	5.39	
add Gaussian noise	$\sigma = 0.05$	1	×	5.53	5.04	
to inputs	$\sigma = 0.1$	1	X	6.41	5.86	
	$\sigma = 0.2$	~	×	7.16	7.24	

Table 5: Results of the ablation studies on the CIFAR-10 dataset. Reported are the median test errors of the last 10 epochs. A tick (\checkmark) means the component is different from standard ERM training, whereas a cross (\varkappa) means it follows the standard training practice. AC: mix between all classes. SC: mix within the same class. RP: mix between random pairs. KNN: mix between k-nearest neighbors (k=200). Please refer to the text for details about the experiments and integrations.

Direct extension of MixUp, play interpolation on hidden representations.

Algorithm:

For each batch, randomly sample a hidden layer k, do interpolation on representation and final labels.

$$(\hat{g}_k, \hat{y}) = (Mix_\lambda(g_k(x), g_k(x')), Mix_\lambda(y, y'))$$
(2)

∃ ▶ ∢ ∃

Manfold MixUp

University of Virginia (UVA)

Zhe Wang

201909 14 / 37

Comparing with widely-used regularization:

- smooths decision boundaries that are further away from the training data
- flattens the class-representations
- better generalization and lower test loss
- increase performance at predicting data subject to novel deformations
- robust to adversarial attacks

Theoretical guarantee:

Given some condition, with manifold MixUp, the representations will lie on a low dimension subspace.

PreActResNet18	Test Error (%)	Test NLL	PreActResNet18	Test Error (%)	Test NLL
No Mixup	4.83 ± 0.066	0.190 ± 0.003	No Mixup	24.01 ± 0.376	1.189 ± 0.002
AdaMix‡	3.52	NA	AdaMix‡	20.97	n/a
Input Mixup†	4.20	NA	Input Mixup†	21.10	n/a
Input Mixup ($\alpha = 1$)	3.82 ± 0.048	0.186 ± 0.004	Input Mixup ($\alpha = 1$)	22.11 ± 0.424	1.055 ± 0.006
Manifold Mixup ($\alpha = 2$)	$\underline{2.95\pm0.046}$	$\underline{0.137 \pm 0.003}$	Manifold Mixup ($\alpha = 2$)	$\underline{20.34 \pm 0.525}$	$\underline{0.912\pm0.002}$
PreActResNet34			PreActResNet34		
No Mixup	4.64 ± 0.072	0.200 ± 0.002	No Mixup	23.55 ± 0.399	1.189 ± 0.002
Input Mixup ($\alpha = 1$)	2.88 ± 0.043	0.176 ± 0.002	Input Mixup ($\alpha = 1$)	20.53 ± 0.330	1.039 ± 0.045
Manifold Mixup ($\alpha = 2$)	$\underline{2.54\pm0.047}$	$\underline{0.118 \pm 0.002}$	Manifold Mixup ($\alpha = 2$)	$\underline{18.35\pm0.360}$	$\underline{0.877 \pm 0.053}$
Wide-Resnet-28-10			Wide-Resnet-28-10		
No Mixup	3.99 ± 0.118	0.162 ± 0.004	No Mixup	21.72 ± 0.117	1.023 ± 0.004
Input Mixup ($\alpha = 1$)	2.92 ± 0.088	0.173 ± 0.001	Input Mixup ($\alpha = 1$)	18.89 ± 0.111	0.927 ± 0.031
Manifold Mixup ($\alpha = 2$)	$\underline{2.55\pm0.024}$	$\underline{0.111 \pm 0.001}$	Manifold Mixup ($\alpha = 2$)	$\underline{18.04\pm0.171}$	$\underline{0.809 \pm 0.005}$
(a)	CIFAR-10		(b) (CIFAR-100	

Table 1: Classification errors on (a) CIFAR-10 and (b) CIFAR-100. We include results from (Zhang et al., |2018)[†] and (Guo et al., |2016)[‡]. Standard deviations over five repetitions.

< □ > < 同 > < 回 > < 回 > < 回 >

Deformation	No Mixup	Input Mixup $(\alpha = 1)$	Input Mixup $(\alpha = 2)$	$\begin{array}{l} \textit{Manifold Mixup} \\ (\alpha = 2) \end{array}$
Rotation U($-20^\circ, 20^\circ$)	52.96	55.55	56.48	<u>60.08</u>
Rotation U($-40^\circ, 40^\circ$)	33.82	37.73	36.78	42.13
Shearing $U(-28.6^{\circ}, 28.6^{\circ})$	55.92	58.16	60.01	62.85
Shearing U($-57.3^{\circ}, 57.3^{\circ}$)	35.66	39.34	39.7	44.27
Zoom In (60% rescale)	12.68	13.75	13.12	11.49
Zoom In (80% rescale)	47.95	52.18	50.47	52.70
Zoom Out (120% rescale)	43.18	60.02	61.62	63.59
Zoom Out (140% rescale)	19.34	41.81	42.02	45.29

Table 4: Test accuracy on novel deformations. All models trained on normal CIFAR-100.

Table	5: T	est	accurac	y Man	ifold	Mixup	for	dif-
ferent	sets	of	eligible	lavers	S on	CIFAR	l.	

S	CIFAR-10	CIFAR-100
$\{0, 1, 2\}$	<u>97.23</u>	79.60
$\{0, 1\}$	96.94	78.93
$\{0, 1, 2, 3\}$	96.92	80.18
$\{1, 2\}$	96.35	78.69
$\{0\}$	96.73	78.15
$\{1, 2, 3\}$	96.51	79.31
{1}	96.10	78.72
$\{2, 3\}$	95.32	76.46
$\{2\}$	95.19	76.50
{}	95.27	76.40

Table 6: Test accuracy (%) of Input Mixup and *Manifold Mixup* for different α on CIFAR-10.

α	Input Mixup	Manifold Mixup
0.5	96.68	<u>96.76</u>
1.0	96.75	97.00
1.2	96.72	97.03
1.5	96.84	97.10
1.8	96.80	97.15
2.0	96.73	97.23

< □ > < 同 > < 回 > < 回 > < 回 >

Why unlabeled data can help?

One of the basic assumption for SSL:

In order to improve generalization performance, the decision boundary should lie in low density regions.

Minimizing the conditional entropy of class probabilities for unlabeled data.

$$H(y|x') = -\frac{1}{N} \sum_{m=1}^{N} \sum_{c=1}^{k} p(y_m^c = 1|x_m') \log(y_m^c = 1|x_m')$$
(3)

Which means for each unlabeled data, the prediction have to be very confident (close to 1-of-k).

Main idea: Pseudo-Label are target classes for unlabeled data as if they were true labels.

Generate pseudo labels for unlabeled data,

$$y'_{i} = \begin{cases} 1, & \text{if } i = \arg \max_{i'} f_{i'}(x'_{i}), \\ 0, & \text{otherwise.} \end{cases}$$
(4)

Objective function:

$$L = \frac{1}{n} \sum_{i=1}^{n} I(f(x_i), y_i) + \alpha \frac{1}{m} \sum_{i=1}^{m} I(f(x_i'), y_i')$$
(5)

The trade off α will be very important, people using annealing process to graduate increase the value.

• • • • • • • •

500

Objective for classification:

$$\min_{\theta} L_{CE}(\theta) = -\mathbb{E}_{x \sim D}[q(y|x) \log(p_{\theta}(\hat{y}|x))]$$
(6)

- In supervised learning, q(y|x) is one hot code
- In knowledge distillation, $q(y|x) = q_{large}(y|x)$
- In SSL, for labeled data, q(y|x) is one hot code, but for unlabeled data, $q(y|x) = p_{tmp}(y|x)$
 - label smoothing
 - temperature tuning

$$p(c|x) = \frac{exp(l_c(x)/\tau)}{\sum_c exp(l_c(x)/\tau)}$$
(7)

Limitations:

- The target distribution is fixed prior to model updating
- The modulation of target distribution is data agnostic.

Solution: meta learning, simultaneously updating posterior and model parameters.

Teacher-Student Interaction,

Have to maintain two computational graph in the memory.

< □ > < 同 > < 回 > < 回 > < 回 >

Methods	CIFAR-10 (4,000)	SVHN (1,000)
Temporal Ensemble (2017)	83.63 ± 0.63	92.81 ± 0.27
Mean Teacher (2017)	84.13 ± 0.28	94.35 ± 0.47
VAT+EntMin (2018)	86.87 ± 0.39	94.65 ± 0.19
LGA+VAT (2019)	87.94 ± 0.19	93.42 ± 0.36
ICT (2019)	92.71 ± 0.02	96.11 ± 0.04
MixMatch (2019)	93.76 ± 0.06	96.73 ± 0.31
Supervised	82.14 ± 0.25	88.17 ± 0.47
Label Smoothing	82.21 ± 0.18	89.39 ± 0.25
Supervised+MPL	$\textbf{83.71} \pm \textbf{0.21}$	$\textbf{91.89} \pm \textbf{0.14}$
RandAugment (2019)	85.53 ± 0.25	93.61 ± 0.06
RandAugment+MPL	$\textbf{87.55} \pm \textbf{0.14}$	$\textbf{94.02} \pm \textbf{0.05}$
UDA (2019a)	94.53 ± 0.18	97.11 ± 0.17
UDA+MPL	$\textbf{96.11} \pm \textbf{0.07}$	$\textbf{98.01} \pm \textbf{0.07}$

メロト メポト メヨト メヨト

Figure 6: Top-1 accuracy of MPL and other methods on ImageNet-10%. MPL surpasses UDA by almost 6% while being only 3% below to training with all labels.

Methods	CIFAR-10	SVHN	ImageNet
Supervised NoisyStudent	$\begin{array}{c} 97.18 \pm 0.08 \\ 98.22 \pm 0.05 \end{array}$	$\begin{array}{c} 98.17 \pm 0.03 \\ \textbf{98.71} \pm \textbf{0.11} \end{array}$	84.49/97.18 85.81/97.53
ReducedMPL	$\textbf{98.56} \pm \textbf{0.07}$	$\textbf{98.78} \pm \textbf{0.07}$	86.87/98.11

▶ ∢ ⊒

Definition and motivation

2 Optimization based SSL

3 Regularization based SSL

∃ ▶ ∢

Require accuracy on labeled data, and consistency on unlabeled data.

Figure 1: Training objective for UDA, where M is a model that predicts a distribution of y given x.

Loss function

$$\min_{\theta} E_{x}(-y_{i} \log p_{\theta}(\hat{y}|x_{i})) + \lambda \mathbb{E}_{x} \mathbb{E}_{\hat{x} \sim aug(x)} [KL(p_{\hat{\theta}}(y|x)||p_{\theta}(y|\hat{x})]$$
(8)

where $\hat{\theta}$ is a copy of θ , with no gradient pass through.

4 3 > 4 3

- can do augmentation on either input or representations
- highly depends on quality of data augmentation
- careful choice of trade-off.
- state-of-the-art model outperforms fully supervised model.

(c) BERT_{LARGE}; (d) BERT_{FINETUNE}: BERT_{LARGE} fine-tuned on in-domain unlabeled data³. Under each of these four initialization schemes, we compare the performances with and without UDA.

		Fu	illy super	vised base	eline		
Datasets (# Sup examp	ples)	IMDb (25k)	Yelp-2 (560k)	Yelp-5 (650k)	Amazon-2 (3.6m)	Amazon-5 (3m)	DBpedia (560k)
Pre-BERT SOTA BERT _{LARGE}	L.	4.32 4.51	2.16 1.89	29.98 29.32	3.32 2.63	34.81 <i>34.17</i>	0.70 0.64
		s	emi-super	vised set	ing		
Initialization	UDA	IMDb (20)	Yelp-2 (20)	Yelp-5 (2.5k)	Amazon-2 (20)	Amazon-5 (2.5k)	DBpedia (140)
Random	×	43.27 25.23	40.25 8.33	50.80 41.35	45.39 16.16	55.70 44.19	41.14 7.24
BERTBASE	×	18.40 5.45	13.60 2.61	41.00 33.80	26.75 3.96	44.09 38.40	2.58 1.33
BERTLARGE	×	11.72 4.78	10.55 2.50	38.90 33.54	15.54 3.93	42.30 37.80	1.68 1.09
BERT _{FINETUNE}	×	6.50 4.20	2.94 2.05	32.39 32.08	12.17 3.50	37.32 37.12	-

Table 4: Error rates on text classification datasets. In the fully supervised settings, the pre-BERT SO-TAs include ULMFIT (Howard & Ruder, 2018) for Yelp-2 and Yelp-5, DPCNN (Johnson & Zhang, 2017) for Amazon-2 and Amazon-5, Mixed VAT (Sachan et al., 2018) for IMDb and DBPedia. All of our experiments use a sequence length of 512.

MixMatch = Aug + Consistency + Pseudo label + MixUp.

One-hot labeled data: $\{(x_b, p_b)\}_{b=1}^B$, unlabeled data $\{u_b\}_{b=1}^B$

Phase 1

- for labeled data x_b , generate new samples (\hat{x}_b, p_b)
- for unlabeled data u_b , generate new k samples $(\hat{u}_{b,k})$, send them into the model get average prediction $\bar{q}_b = \frac{1}{k} \sum_{i=1}^k P_{model}(y|\hat{u}_{b,i})$

•
$$q_b = sharpen(\bar{q}_b)$$

Phase 2

• $\hat{\mathbb{X}} = (\hat{x}_{b}, p_{b})_{b=1}^{B}$ • $\hat{\mathbb{U}} = (\hat{u}_{b,k}, q_{b})_{b,k=1}^{B,K}$ • $\mathbb{W} = shuffle(cat(\hat{\mathbb{X}}, \hat{\mathbb{U}}))$ • $\mathbb{X}' = MixUp(\hat{\mathbb{X}}_{i}, \mathbb{W}_{i})_{i=1}^{|\hat{\mathbb{X}}|}$ • $\mathbb{U}' = MixUp(\hat{\mathbb{U}}_{i}, \mathbb{W}_{i+|\hat{\mathbb{X}}|})_{i=1}^{|\hat{\mathbb{U}}|}$

$$\mathcal{L}_{\mathcal{X}} = \frac{1}{|\mathcal{X}'|} \sum_{x, p \in \mathcal{X}'} \mathrm{H}(p, \mathrm{p}_{\mathrm{model}}(y \mid x; \theta))$$
$$\mathcal{L}_{\mathcal{U}} = \frac{1}{L|\mathcal{U}'|} \sum_{u, q \in \mathcal{U}'} \|q - \mathrm{p}_{\mathrm{model}}(y \mid u; \theta)\|_{2}^{2}$$
$$\mathcal{L} = \mathcal{L}_{\mathcal{X}} + \lambda_{\mathcal{U}} \mathcal{L}_{\mathcal{U}}$$

Adding graph regularization into loss function

$$L = L_0 + \lambda L_{reg}, \quad L_{reg} = \sum_{i,j} A_{ij} ||f(x_i) - f(x_j)||^2 = f(X)^T \Delta f(X), \quad (9)$$

where $\Delta = D - A$.

Nowadays, people prefer using GCN, which directly encode graph structure into nn architecture.

$$H^{l+1} = \sigma(\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{1/2}H^{l}W^{l})$$
(10)

- Definition and motivation
- 2 Optimization based SSL
- 3 Regularization based SSL
- Generative model based SSL

∃ ▶ ∢

So far, we introduce some non parametric approach to do data augmentation. We next introduce how to generate new data via a parametric approach.

Another perspective: few shot learning. Variants of MAML require train with limited data, but hallucination based data augmentation will generate more data.

Two objectives: good classifier, "well-generated" new samples.

Inner loop: with augmented training set, find a good classifier. G is fixed.

Outer loop: G and h are trained jointly on dataset $(x_{tr}, y), (G(z, x_{tr}), y), (x_{te}, y)$