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Background

Knowledge in a complex distribution can be represented in a modularized
way, and those modules are independent.(Chain Rule)

P(A, B) = P(A)P(B|A)

P(A,B) = P(B)P(A|B)

Small intervention (perturbation): The transfer distribution will change
only one of few of the modules.

ICM assumption: P(X) and P(Y|X) are not related.
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Introduction

Target: Disentangling causal mechanisms within a joint distribution.

Specifically: {A, B}, want to tell: {A — B} or {B — A}.

oo 60

Who is cause, who is effect?

Assumption: Correct causal structural choice leads to faster adaptation to
shift distributions.

Main Idea: To use the speed of adaptation to a modified distribution as a
meta-learning objective.
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For bivariate model, both random variables are sampled from a categorical
distribution:

A ~ Cate(ma)
B|A =b ~ Cate(rp,),

where ma, 7|, are all probability vector of size N.

Marginal Condition:
P(B
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Marginal Condition

| P(B) | by | ba [ b3 | bs| bs | bs P(.A'|‘b1)

University of Virginia (UVA) 201909 5/18



In test environments, P(A) is changed.

Generate the test environments: Sample A and then sample B based on A.

Learned Causal Structure

# of parameters

nonzero gradients

P(A), P(BJA)

N2+ N

N

P(B), P(AIB)

N2+ N

N2+ N

Required number of data to perform adaptation:

Ndata = Cl -VC
VC = C2 : Nparam
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Why invariant mechanisms do not need to be relearned?

The gradient w.r.t the invariant module parameter is 0 if:
@ correctly learned in the training phase
@ have the correct set of causal parents, corresponding to the ground
truth causal graph

@ the corresponding ground truth conditional distributions is invariant
from training distribution to the shifted distribution.
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Soft Parametrization

Impossible to enumerate all possible causal structures and compare
adaptation speed.

In the simple setting {A, B}, the transfer objective as a log-likelihood over
the mixture of the two explanations:

R = —log[o(v)Lasg + (1 — (7)) Le-Al

where La_,g and Lg_, 4 are the online likelihoods on the test data.

.

Lag = H Pa_.g(at, be; 6¢) (1)
t=1
T

Lg .p= H PB—»A(at, bs; 9t) (2)
t=1
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@ The {(a, br)} is the set of test examples at time t.
@ 0; are parameters as of time step t.
e P(a, b; ) is the likelihood of example under model with parameter 6.

It is a meta-learning framework and the inner loop fine-tunes the module
parameters, the outer loop updates the structural parameters(7y).

End up where?

R
SGD on Ep,[R] with steps from (2— converges towards o(y) = 1 if

Ep,|log La—.B] > Ep,[log Lg_,A] or o(y) = 0, otherwise.
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Meta-learning (also known as learning to learn) : Quick leaner.

Pervious learned form a rich base. Quick adaptation with a few data and
iterations.

@ Optimization based.

e Learn a good initialization. (MAML: Model-agnostic meta-learning for
fast adaptation of deep networks.)

o Use another NN to update the parameter of the model.
@ Model based.

@ Distance based.
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MAML

Task distributions:
T ={L(x1,a1, - ,xH,aH), q(x1), g(xe+1|Xt, a), H}.
For simplicity, for classification tasks:
T = {L(x,y),q(x,y)}.

Suppose the model is fy, for each sampled task T,Q, the model parameter
for each task can be updated via SGD:

9,’ =0 — CVVQLTQ(](@)
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Above gradient descent only optimizes one particular task
To generalize: find a 6* to guarantee efficient fine-tuning.

We sample new mini-batch from the training tasks, denoted as 7',-1.

0* = arg mein Z( )LTil(fgl.)
Ti~p(T

0=0-5Y9 > Lalfoavee om)

Ti~p(T)
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Pseudo Code

Draw initial meta-parameters of learner

Draw a training set from training distr.

Set causal structure to include all edges

Initialize learner parameters for this model

Pre-train the learner’s parameters on the training set

Repeat J times

Draw a transfer distr.

Draw causal structure(s) according to meta-parameters

Repeat T times
Sample minibatch from transfer distribution
Accumulate online log-likelihood of minibatch
Update the model parameters accordingly

Compute the meta-parameters gradient estimator
Update the meta-parameters by SGD
Optionally reset parameters to pre-training value

Algorithm 1: Meta-Transfer Learning of Causal Structure
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Disentangling the causes

Realistic settings: no access to the true underlying causal variables {A, B}.
Example: Sensory-level data like pixels and sounds.
The previous assumption doesn’t hold.

Method: Add a encoder to map the observations to hidden space where
the assumption holds.
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The encoder is trained such that the hidden space helps to optimize the
meta-transfer objective described above.
So, encoder's parameters are also regarded as meta-parameters.
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Results

It can recover correct causal variables and recover correct casual direction,
simultaneously.
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