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Motivation

. Before motivation:

e Attribution: Input(x;) Output(y))

e Causality 1s not equivalent to correlation

, Why:
 Interpretability of a trained neural network

* In this work, they focus on a specific method:
attribution



. Five axioms for attribution methods:

* Conservativeness
* Sensitivity
e Implementation invariance

e Symmetry preservation

e Input variance



Related Work

Perturbation based methods:

e Analyze the effect of small perturbation
For example: gradient based methods

Regression based method:

e Using well-studied classifier to mimic the local
decision boundary of neural networks.
For example: decision tree and multinomial model



Claim / Target Task

Note: This is not about 4 28 or 5> 4

This 1s about identifying the effect of x; on y; .
How to quantity?

Def (Average Causal Effect)

The ACE of a binary value variable x on another random variable y is defined as:

E(y|do(x = 1)) — E(y|do(x = 0)).
For continuous random variable, ACE 1s defined as:
ACEC){O(xi:a) = E(y|do(x; = a)) — baseline.
ACE

do(x;=chs defined as the causal attribution of Xx; to for y.



Causality

. Structural Causal Models (SCM)

(X, U, f,R)

e X endogenous random variables
e U exogenous random variables
e { causal functions

e P, distribution of U

Local Markov property for DAG:

PGy, 0) = 1 PCxlpa()



Fold NN as SCMs

Following the tradition on SCMs, each NN can be viewed as:

([, Ly s b ], Us U1 f20 00 fnl B,

marginalizing out all hidden neurons, we get:

([l1, In] U, £, Ry).

Basic assumption: there is no causal relation for input variables 7



RNN as SCMs

Reduction
__.@__@__.@‘9_, >
@ It+ It+

For RNNs, basic assumption doesn’t hold anymore, interventions on
input x; affect input x; .
Need a little revision during the data sampling stage.

They also prove an important theorem: along the temporal dimension
which part of input [x;_;, *** X;_1, X¢|, will completely decide y,.8



Implement

Average causal effect 1s defined as:
ACE;

do(xij=a)

= E(y|do(x; = a)) — baseline,

baseline 1s calculated as:
baseline = E, E, (y|do(x; = a)),

It there 1s a strong known domain knowledge

baseline = E,, (y|do(x; = a)),

You can do sampling and then calculation but no...



Consider a second-order Taylor series expansion about .
Let y = fy(x1, X2, ..., Xk):

fy(h) ~ fy(1) + VT (1) (h — p) + %(11 — )V () (h = p)
which becomes
E[f, (1)l do(x; = a)] & £(u)+5 TH(V2A(El(h—x)(h ) ldo(x; = o)

where:

&l = [“17/1'2a ---,Mk]T
o 1j = E[xj|do(x; = )]
8 I = P4 Xy ]
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3-layer CNN for Iris data classification (4 inputs + 3 outputs)

Q

Causal Attributions (ACE)

Causal Attributions (ACE)
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[

= Simulated Sequence data

Data generation: output depends on first 3 inputs, len(input) = [10, 15]

Model: GRU

(c)

6 B o 6 0 © “ Imputed Feature ~ Average Test Error  Num. prediction changes
2" ~ N(0, 0.2) (D) 0.01068 1956
z' ~ N(0,0.2)(Dy) 0.01072 9
P 0 Q9|9 O & @ 2% ~ N(0, 0.2)(D,) 0.01059 0
4 6 8 10 None(Baseline) 0.01059 -
input sequence
Generated saliency maps Manipulated first three inputs
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MNIST with f — VAE with 20 hidden dimensions, experiments on decoder.




View MLP as SCMs

Analyze the contribution of each input to the output

Scalability to high-dimensional data

Provide interpretability for neural networks
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