Model-Free Value Methods in Deep RL

Presenter: Jake Grigsby

University of Virginia https://qdata.github.io/deep2Read/

202008

Presenter: Jake Grigsby (University of Virgini Model-Free Value Methods in Deep RL

202008 1/35

Markov Decision Process

Definition

A Markov Decision Process (MDP) consists of:

- S, a set of states
- \mathcal{A} , a set of actions
- $\mathcal{R} \subseteq \mathbb{R}$, a set of rewards
- a dynamics function $p: \mathcal{S} \times \mathcal{R} \times \mathcal{S} \times \mathcal{A} \to [0,1]$

$$p(s', r|s, a) = Pr\{S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a\}$$

It's common to break the dynamics function p up into a **Transition Function** $T(s, a, s') = \sum_{r \in \mathcal{R}} p(s', r|s, a)$, and a **Reward Function** $R(s, a) = \sum_{r \in \mathcal{R}} r \sum_{s' \in S} p(s', r|s, a)$

The RL Problem

The goal of RL agents is to find a **policy**¹ $\pi^* : S \to A$ that maximizes the *expected discounted return*

$$\pi^* = \operatorname*{argmax}_{\pi} \mathop{\mathbb{E}}_{ au \sim \pi} \left[\sum_{t=0}^{t=\infty} \gamma^t R_t
ight]$$

where $\gamma \in [0, 1)$ is the *discount factor* that lets us deal with non-episodic tasks and τ is a *trajectory* (a sequence of states and actions that describe the agent's experience)

¹Policies can also be stochastic, in which case they're written $\pi(a|s):\mathcal{S}x\mathcal{A} o [0,1]$

Simplifying Assumptions

We begin by making some assumptions about the task we are trying to solve:

- The dynamics of the model (p(s', r|s, a)) are known
- $\bigcirc |\mathcal{S}| \ll \infty$
- $\bigcirc |\mathcal{A}| \ll \infty$

Simplifying Assumptions

Example: Gridworlds

Generalized Policy Iteration

Solution: Policy Iteration Dynamic Programming

We'll skip these details because knowledge of dynamics is such a limiting assumption in our case. More info can be found in [9]

Simplifying Assumptions

- The dynamics of the model (p(s', r|s, a)) are known
- $\bigcirc |\mathcal{S}| \ll \infty$
- $\bigcirc |\mathcal{A}| \ll \infty$

What if the environment dynamics are unknown?

Value Methods

Definition

Value methods attempt to learn the optimal Q Function

$$Q^*(s,a) = \max_{\pi} \mathop{\mathbb{E}}_{\pi} \left[\sum_{k=0}^{k=\infty} \gamma^k R_{t+k+1} \mid \mathcal{S}_t = s, \mathcal{A}_t = a \right]$$

Why? Because given $Q^*(s, a)$, the optimal policy can easily² be computed by

$$\pi^*(s) = \operatorname*{argmax}_{a} Q^*(s,a)$$

²Well at least for now. The max operation is going to be a problem later ... a normalized set of the set of

Value Methods: Monte Carlo

• Play out entire episodes and keep track of the average return we experience from every (s, a) pair.

Pros

- Easy to implement
- Cons
 - Learning can only happen at the end of each episode. What if episodes are long (or never end)?

Value Methods: Monte Carlo

Initialize, for all $s \in \mathcal{S}$, $a \in \mathcal{A}(s)$: Fixed point is optimal $Q(s, a) \leftarrow \text{arbitrary}$ policy π^* $\pi(s) \leftarrow \text{arbitrary}$ $Returns(s, a) \leftarrow empty list$ Proof is open question Repeat forever: (a) Generate an episode using exploring starts and π (b) For each pair s, a appearing in the episode: $R \leftarrow$ return following the first occurrence of s, a Append R to Returns(s, a) $Q(s, a) \leftarrow \operatorname{average}(Returns(s, a))$ (c) For each s in the episode: $\pi(s) \leftarrow \arg \max_a Q(s, a)$

Figure: Monte Carlo Action Value Control [9]

A Quick Note on Exploration vs. Exploitation

- At each time step, the agent must choose between "exploiting" the action it currently thinks has the best return and "exploring" alternatives to learn more about them.
- Most convergence guarantees assume state coverage
 - Every state will be visited an infinite number of times in an infinite number of timesteps.
 - This can be acheived by enforcing:

 $\pi(a|s) > 0, \forall s \in S$

A Quick Note on Exploration vs. Exploitation

• The simplest way to do this is to make an existing policy ϵ -greedy:

 $\pi'(s) = \begin{cases} \pi(s) & \text{with probability } (1-\epsilon); \\ \pi_{random}(s) & \text{with probability } \epsilon; \end{cases}$

A Quick Note on Exploration vs. Exploitation

• The simplest way to do this is to make an existing policy ϵ -greedy:

$$\pi'(s) = egin{cases} \pi(s) & ext{with probability } (1-\epsilon); \ \pi_{ ext{random}}(s) & ext{with probability } \epsilon; \end{cases}$$

- This can be thought of as injecting noise into the action space
- All of the agent's we'll be talking about use this general approach, but there is a lot of interesting work on motivating agents to explore efficiently. [5] [11]

Value Methods: Temporal Difference

- Randomly initialize Q(s, a) and use interactions with the environment as a sample to update this 'bootstrap'
- Updates based on the Bellman Equation:

$$Q^{\pi}(s,a) = \mathop{\mathbb{E}}_{s'} \left[r(s,a) + \gamma \mathop{\mathbb{E}}_{a' \sim \pi} \left[Q^{\pi}(s',a')
ight]
ight]$$

Value Methods: Temporal Difference

- Randomly initialize Q(s, a) and use interactions with the environment as a sample to update this 'bootstrap'
- Updates based on the Bellman Equation:

$$Q^{\pi}(s, a) = \mathop{\mathbb{E}}_{s'} \left[r(s, a) + \gamma \mathop{\mathbb{E}}_{a' \sim \pi} \left[Q^{\pi}(s', a') \right] \right]$$

- Pros
 - Online learning, no need to wait for the end of an episode.
- Cons
 - Generally less stable when used with function approximation methods (more on this soon...)

Value Methods: Temporal Difference

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$ Initialize Q(s, a), for all $s \in S^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S' $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$ $S \leftarrow S'$ until S is terminal

Figure: Q-Learning Pseudo-code [9]

Simplifying Assumptions

- The dynamics of the model (p(s', r|s, a)) are known
- $\bigcirc |\mathcal{S}| \ll \infty$
- $\bigcirc |\mathcal{A}| \ll \infty$

What if the state space is too large for dynamic programming?

Tasks with Large State Spaces

Example: Video Games

- Pixel input makes $|S| = \mathbb{Z}_{256}^{H \times W \times C}$
- Atari 2600 games make up one of the most popular benchmarks in modern RL.

Figure: Games in the Arcade Learning Environment [1] benchmark

- Paramaterize Q with a neural network that can learn to recognize patterns between similar states.
- Train this network to minimize the *Mean Squared Bellman Error* (MSBE)

$$BE(s, a, r, s', d) = (r + \gamma(1 - d) \max_{a'} Q_{\theta'}(s', a')) - Q_{\theta}(s, a)$$

- Paramaterize Q with a neural network that can learn to recognize patterns between similar states.
- Train this network to minimize the *Mean Squared Bellman Error* (MSBE)

$$BE(s, a, r, s', d) = (r + \gamma(1 - d) \max_{a'} Q_{\theta'}(s', a')) - Q_{\theta}(s, a)$$

• Kind of like supervised deep learning!

- One important difference:
 - * The data distribution depends on the parameters (far from i.i.d)

DQNs [3] use a couple tricks to make this more like supervised learning:

- **(**) Create a *replay buffer* \mathcal{R} to store transitions (s, a, r, s', d)
 - Randomly sample from this buffer at each training step.
- **2** Create a *target network* to generate the the bellman error targets.
 - \blacktriangleright This is a duplicate of the original network that is not trained but is updated with fresh params every \sim 10000 steps.

The original DQN was able to learn superhuman policies on many games with dense reward signals!

Algorithm 1: deep Q-learning with experience replay. Initialize replay memory D to capacity N Initialize action-value function Q with random weights θ Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$ For episode = 1, *M* do Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$ For t = 1,T do With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a O(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D Sample random minibatch of transitions $(\phi_{j}, a_{j}, r_{j}, \phi_{j+1})$ from D Set $y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{\mathcal{Q}}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$ Perform a gradient descent step on $(y_i - Q(\phi_i, a_i; \theta))^2$ with respect to the network parameters θ Every C steps reset $\hat{Q} = Q$ End For End For

Figure: [3]

Simplifying Assumptions

- O The dynamics of the model (p(s', r|s, a)) are known
 O |S| ≪∞
 O |A| = 0
- $\bigcirc |\mathcal{A}| \ll \infty$

Continuous Control Tasks

MDPs where the actions are vectors (e.g. torque on a robot's motors, acceleration of a car, degrees to turn...)

Figure: Example MuJoCo control task

Figure: Simulated robotics task

Continuous Control Tasks

Q: Why won't DQN work?

A: It's too difficult to compute the Bellman Error, because we can't max over such a large set of actions

$$BE(s, a, r, s', d) = (r + \gamma(1 - d) \max_{a'} Q_{\theta'}(s', a')) - Q_{\theta}(s, a)$$

Deep Deterministic Policy Gradient (DDPG)

"Deep Q Learning for Continuous Action Spaces" [2]

- DDPG is an Actor-Critic method
 - Actor network $\mu_{\theta}(s)$
 - Critic network $Q_{\phi}(s, a)$
- We can get around the max operation issue by having the network learn this for us:

$$\mu_{ heta}(s) = \mathop{argmax}\limits_{a} Q_{\phi}(s,a)$$

- How do we train this?
 - At each step, we optimize the critic network based on standard MSBE, and we optimize the actor network with gradient ascent using

$$abla_ heta rac{1}{|\mathcal{B}|} \sum_{s \in \mathcal{B}} Q_\phi(s, \mu_ heta(s)) \; .$$

Deep Deterministic Policy Gradient (DDPG)

Algorithm 1 Deep Deterministic Policy Gradient

- 1: Input: initial policy parameters θ , Q-function parameters ϕ , empty replay buffer D
- 2: Set target parameters equal to main parameters $\theta_{targ} \leftarrow \theta$, $\phi_{targ} \leftarrow \phi$

3: repeat

- Observe state s and select action a = clip(μ_θ(s) + ε, a_{Low}, a_{High}), where ε ∼ N
- 5: Execute a in the environment
- 6: Observe next state s', reward r, and done signal d to indicate whether s' is terminal
- Store (s, a, r, s', d) in replay buffer D
- 8: If s' is terminal, reset environment state.
- 9: if it's time to update then
- 10: for however many updates do
- 11: Randomly sample a batch of transitions, $B = \{(s, a, r, s', d)\}$ from D
- 12: Compute targets

$$y(r, s', d) = r + \gamma(1 - d)Q_{\phi_{targ}}(s', \mu_{\theta_{targ}}(s'))$$

Update Q-function by one step of gradient descent using

$$\nabla_{\phi} \frac{1}{|B|} \sum_{(s,a,r,s',d) \in B} (Q_{\phi}(s,a) - y(r,s',d))^2$$

Update policy by one step of gradient ascent using

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} Q_{\phi}(s, \mu_{\theta}(s))$$

15: Update target networks with

$$\phi_{\text{targ}} \leftarrow \rho \phi_{\text{targ}} + (1 - \rho) \phi$$

 $\theta_{\text{targ}} \leftarrow \rho \theta_{\text{targ}} + (1 - \rho) \theta$

16: end for

17: end if

18: until convergence

Figure: DDPG Pseudocode [4]

Twin Delayed DDPG (TD3)

- Actor-critic methods suffer from *overestimation bias*
 - Actor network learns to exploit inaccuracies in the approximation of the Q function
- Three ticks help reduce this effect:
 - Delayed Policy Updates
 - ★ Update the critic more often than the actor
 - Output Set in the A function by adding noise to the target actions

$$\mu_{\theta'}(\mathbf{s}') \rightarrow \mu_{\theta'}(\mathbf{s}') + \epsilon, \epsilon \sim \mathcal{N}(\mathbf{0}, \sigma)$$

- * Force the bellman targets to be the same in the neighborhood of each action.
- Output Clipped Double-Q Learning"
 - ★ Train two critics and use the smallest of the two Q values.
 - * Explicitly prefer underestimates of the Q function to overestimates.

Twin Delayed DDPG (TD3)

Algorithm 1 Twin Delayed DDPG 1: Input: initial policy parameters θ , Q-function parameters ϕ_1 , ϕ_2 , empty replay buffer D2: Set target parameters equal to main parameters $\theta_{targ} \leftarrow \theta$, $\phi_{targ,1} \leftarrow \phi_1$, $\phi_{targ,2} \leftarrow \phi_2$ 3: repeat Observe state s and select action $a = \operatorname{clip}(\mu_{\theta}(s) + \epsilon, a_{Low}, a_{High})$, where $\epsilon \sim N$ Execute a in the environment Observe next state s', reward r, and done signal d to indicate whether s' is terminal Store (s, a, r, s', d) in replay buffer \mathcal{D} If s' is terminal, reset environment state. 8 if it's time to update then 9: for *i* in range(however many updates) do 10: Randomly sample a batch of transitions, $B = \{(s, a, r, s', d)\}$ from D11: 12:Compute target actions $a'(s') = \operatorname{clip} (\mu_{\theta_{tors}}(s') + \operatorname{clip}(\epsilon, -c, c), a_{Low}, a_{High}), \quad \epsilon \sim \mathcal{N}(0, \sigma)$ 13: Compute targets $y(r, s', d) = r + \gamma (1 - d) \min_{i=1,2} Q_{\phi_{targ,i}}(s', a'(s'))$ 14: Update Q-functions by one step of gradient descent using $\nabla_{\phi_i} \frac{1}{|B|} = \sum_{(q, q) \in \mathcal{A}} (Q_{\phi_i}(s, a) - y(r, s', d))^2$ for i = 1, 215: if $j \mod policy_delay = 0$ then Update policy by one step of gradient ascent using 16: $\nabla_{\theta} \frac{1}{|B|} \sum Q_{\phi_1}(s, \mu_{\theta}(s))$ 17: Update target networks with for i = 1, 2 $\phi_{\text{targ }i} \leftarrow \rho \phi_{\text{targ }i} + (1-\rho) \phi_i$ $\theta_{\text{targ}} \leftarrow \rho \theta_{\text{targ}} + (1 - \rho) \theta$

18: end if
 19: end for
 20: end if
 21: until convergence

Twin Delayed DDPG (TD3)

Figure 5. Learning curves for the OpenAI gym continuous control tasks. The shaded region represents half a standard deviation of the average evaluation over 10 trials. Curves are smoothed uniformly for visual clarity.

Figure: [6]

202008 27 / 35

Distributed Methods

- Like many other areas of Deep Learning, Model-Free Deep RL benefits from more computation, large training sets and high quality data.
- In RL, we can't make the training set larger, but we can collect more experience
- Distributed methods run multiple actor agents in parallel, and store the transitions in a distributed replay buffer. A learner samples from the buffer to improve its parameters.

Ape-X [7]

Distributed actors that feed to a central replay buffer. High performance at the cost of sample efficiency.

- \rm Ape-X [7]
 - Distributed actors that feed to a central replay buffer. High performance at the cost of sample efficiency.
- - ► Ape-X + RNN architecture that helps with partially observable tasks.

- \rm Ape-X [7]
 - Distributed actors that feed to a central replay buffer. High performance at the cost of sample efficiency.
- Q R2D2 [8]
 - ► Ape-X + RNN architecture that helps with partially observable tasks.
- O NGU [11]
 - ▶ R2D2 + a family of policies with different levels of *intrinsic motivation*
 - Great results on sparse reward games that are hardest to explore

- \rm Ape-X [7]
 - Distributed actors that feed to a central replay buffer. High performance at the cost of sample efficiency.
- - ► Ape-X + RNN architecture that helps with partially observable tasks.
- O NGU [11]
 - ▶ R2D2 + a family of policies with different levels of *intrinsic motivation*
 - Great results on sparse reward games that are hardest to explore
- Agent57 [10]
 - ▶ NGU + a multiarmed bandit for policy hyperparameter selection.
 - Superhuman performance on all 57 ALE Games!

202008 30 / 35

Figure: Performance of Distributed DQN variants on the 10 most challenging Atari games. Note the incredible 50B frames required to find the optimal policy![10]

Distributed DDPG

Figure 3: Performance of Ape-X DPG on four continuous control tasks, as a function of wall clock time. Performance improves as we increase the numbers of actors. The black dashed line indicates the maximum performance reached by a standard DDPG baseline over 5 days of training.

Figure: Ape-X DPG [7]

The Problem with Model-Free

The best model-free methods require millions if not billions of environment interactions to train. This creates several problems:

- It would be difficult to apply them to problems where experience is hard to come by (e.g. real-world robots)
- O They are incredibly expensive to train and experiment with
 - It would take at least 17 Trillion steps to do a full comparison sweep vs Agent57 on the ALE. (5.7 Trillion per random seed...)
 - Each new training run takes roughly 17 days even on Google's hardware.
- O They are extremely complicated to implement, and are not all open source.

References I

- Marc G Bellemare et al. "The arcade learning environment: An evaluation platform for general agents". In: *Journal of Artificial Intelligence Research* 47 (2013), pp. 253–279.
- Timothy P. Lillicrap et al. Continuous control with deep reinforcement learning. 2015. arXiv: 1509.02971 [cs.LG].
- Volodymyr Mnih et al. "Human-level control through deep reinforcement learning". In: Nature 518.7540 (2015), pp. 529–533.
 - Joshua Achiam. "Spinning Up in Deep Reinforcement Learning". In: (2018).
- Yuri Burda et al. "Large-scale study of curiosity-driven learning". In: arXiv preprint arXiv:1808.04355 (2018).
- Scott Fujimoto, Herke Van Hoof, and David Meger. "Addressing function approximation error in actor-critic methods". In: *arXiv* preprint arXiv:1802.09477 (2018).

References II

- **Dan Horgan et al.** "Distributed prioritized experience replay". In: *arXiv preprint arXiv:1803.00933* (2018).
- Steven Kapturowski et al. "Recurrent experience replay in distributed reinforcement learning". In: (2018).
- Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
- Adrià Puigdomènech Badia et al. "Agent57: Outperforming the Atari Human Benchmark". In: *arXiv preprint arXiv:2003.13350* (2020).
- Adrià Puigdomènech Badia et al. "Never Give Up: Learning Directed Exploration Strategies". In: *arXiv preprint arXiv:2002.06038* (2020).