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Motivation

Knowledge graphs are multi-relational data

completing large databases : lots of missing information in knowledge
graphs

Method: R-GCN

Statistical relational learning: predicting missing attributes in
knowledge bases
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Knowledge Graphs

Knowledge databases store subject-predicate-object

the subject and object are entities that have types

Knowledge Graphs are multigraphs
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Method: Relational Graph Convolutional Networks
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N r
i denotes the set of neighbor indices of node i under relation r ∈ R.

ci ,r is a problem-specific normalization constant that can either be
learned or chosen in advance (such as ci ,r = |N r

i |).
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The Model
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Regularization

As the number of types of relations increases in a graph, number of
parameters increase: overfitting

basis and block-diagonal decomposition

Basis: Shared basis vectors for all Wr (shared weights)

Block Diagonal matrices compose to make Wr (sparsity)
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Basis

W
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effective weight sharing between different relation types
can alleviate overfitting on rare relations, as parameter updates are shared
between both rare and more frequent relations.
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Block Diagonal

W
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Thereby, W
(l)
r are block-diagonal matrices: diag(Q

(l)
1r , . . . ,Q

(l)
Br ) with

Q
(l)
br ∈ R(d (l+1)/B)×(d (l)/B).

sparsity constraint on the weight matrices for each relation type

latent features can be grouped into sets of variables which are more
tightly coupled within groups than across groups
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Task: Entity Classification
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Mikhail Baryshnikov was educated at the Vaganova Academy implies that Mikhail
Baryshnikov should have the label person
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Task: Link Prediction
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knowing that Mikhail Baryshnikov was educated at the Vaganova
Academy implies that the triple (Mikhail Baryshnikov, lived in, Russia)
must belong to the knowledge graph.
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RGCN for Tasks

Modeling Relational Data with Graph Convolutional NetworksPresenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 11 / 19

https://qdata.github.io/deep2Read


Task: Entity Classification

Stack R-GCN layers with softmax layers in the end

minimize cross entropy loss

L = −
∑
i∈Y

K∑
k=1

tik ln h
(L)
ik , (4)

where Y is the set of node indices that have labels and h
(L)
ik is the k-th

entry of the network output for the i-th labeled node. tik denotes its
respective ground truth label.
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Task: Link Prediction

Only given Ê from a total number of edges E

Assign scores to f (s, r , o), how likely is edge s, r , o to belong to E

Model (a) Encoder (b) Decoder/Scorer
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Task: Link Prediction

Encoder output : each vi mapped to ei ∈ Rd = hLi
Decode / score s, r , o g : Rd × R × Rd → R

f (s, r , o) = eTs Rreo where Rr is a diagonal matrix

trained with negative sampling by randomly corrupting the subject or
the object

For each observed example we sample ω negative ones

trained in a supervised manner

L = − 1

(1 + ω)|Ê |

∑
(s,r ,o,y)∈T

y log l
(
f (s, r , o)

)
+

(1− y) log
(
1− l

(
f (s, r , o)

))
,

(5)
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Decoder/Scorer: DistMul factorization
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Entity classification experiments

Datasets Accuracy

Modeling Relational Data with Graph Convolutional NetworksPresenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 16 / 19

https://qdata.github.io/deep2Read


Baselines

RDF2Vec

Weisfeiler-Lehman kernel

hand designed feature extractors

Metrics:

Mean Reciprocal Rank1

Hits @ n

1The mean reciprocal rank is a statistic measure for evaluating any process that
produces a list of possible responses to a sample of queries, ordered by probability of
correctness. The reciprocal rank of a query response is the multiplicative inverse of the

rank of the first correct answer: :
1

|Q|
1

ranki
sample of queries Q
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Link Prediction Experiments

Datasets

Mean reciprocal rank (MRR) for
R-GCN and DistMult on the FB15k
validation data as a function of the
node degree
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Link Prediction

Figure: Results on the the Freebase and WordNet datasets

Figure: Results on FB15k-237
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