Pointer Graph Networks

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu,
Oriol Vinyals, Charles Blundell

Presenter: Arshdeep Sekhon
https://qdata.github.io/deep2Read

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read
https://qdata.github.io/deep2Read

@ (1) Solving classical graph algorithms known to be hard for GNNs

@ (2) Graph specification for GNNs:
o prespecified: we can use fully connected but doesnt work for large p
e hand designed: can be error or bias prone
@ Solution: Learning data driven graph:
e scalability 2P graphs
e error term because of message or wrong graph

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

PGNs vs Related work

@ (1) Solving classical graph algorithms known to be hard for GNNs
e more difficult algorithms compared to previous work
e out of distribution generalization
@ (2) Graph specification for GNNs:
e supervision from known graphs
e scalable

e node masking to encourage sparsity instead of /; regularization
o Use both Apartially known T Alearnt

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

PGN Key Contributions

@ latent graph inference
o for classical graph algorithms

@ out of distribution generalization

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

PGN Architecture

oo

8o

GNN
Equs. 1-2

88

288

e

=%

Self-Attn GNN
) Bams. 67 Eqns. 1-2
) 5(,7)

Eam 3 Eam 3

38

D

&,

@ Assume an underlying set of n entities.

o Given are sequences of inputs £, €@ . where
g — (e‘ft), e'ét), e e'f,t)) for t > 1 is defined by a list of feature
vectors é,(t) € R™ for every entity i € {1,...,n}.

@ Sequential Prediction Task: predicting target outputs y(t) € R/ based
on operation sequence EM)_ ... £ yp to t.

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

Example Task: Dynamic Graph Connectivity

Dynamic Graph Connectivity: Are two vertices connected?
@ inputs/ operations éft)

o outputs y(1): binary indicators of whether pairs of vertices are
connected.

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

PGN Architecture

©

oo

GNN
Equs. 1-2

28

38
8

@

e

)

D

Self-Attn
RS s LU

Eqns. 67

GNN

Equs. 1-2

Ean. 3

@ Sequential prediction task: history of operations for all entities

@ defined on unordered set of entities: permutation invariant!

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks

Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

PGN Architecture: Three Parts

2O
®

g
&

o

8
aaege

GNN
Equs. 1-2

)% -@9 ESNN) repeat
k ‘qus. 6-7 ms. 12 708

- 1o

=

Ean. 3 Ean. 3

D
(=)
&)

&

o Encoder
@ Processor

@ Decoder

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

PGN Architecture: Initialization

) W))

)

() @&
Self-Attn GNN @ repeat
) B, 6.7 “ Baus. 12)

) v)

Eqn. 3 Eqn. 3

GNN

Equs. 1-2
@)

o PGN computes /atent features h;'’ € R¥ for each entity i. Initially,

HO 5.

e dynamic pointers: pointer adjacency matrix M) € R,

@ Pointers correspond to undirected edges between two entities:
indicating that one of them points to the other. M(*) is a binary
symmetric matrix, Initially, each node points to itself: 1) = 1,,.

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

PGN Architecture: Encoder

©
®

g

o

8
3

=

(@)
Self-Attn GNN
) Bams 67 Eans. 1-2

GNN
Eqns. 1-2

88

Ean 3 B 3

-)

=
e

D

N
(=)
®
&
(=)
®

@ Encoder f:
20 = £ (9, KY) (1)

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

PGN Architecture: Processor

i

®
®

s
=
e

®
&
3
&

88l

=

GNN
Equs. 12

’ @) @5
Self-Attn GNN (@) repent

) Bquw 67 @@ Eqns. 1-2)

) ¥(,0)

@5 @)

38
&

e

@ processor network, P, which takes into account the current pointer
adjacency matrix as relational information:

HO — p (z(r)’ H(H)) (2)

yielding next-step latent features, H(t) = (I_{gt), _’gt), e I?S,t))

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

N Architecture: Decoder

Q)

() 1 Pl

N D
GNN () Self-Attn < @ GNN
Equs. 12)i Bams. 6.7 Equs. 1-2
@
¥

@ 00
S Decoder (72
Ean. 3 Ean. 3

®
&
3
&

6

880
&

=

38
2

&,

)

@ These latents can be used to answer set-level queries using a decoder

network g:
79 —¢ (P2 P (3)

where € is any permutation-invariant readout aggregator, such as
summation or maximisation.

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

PGN Architecture: Learning Pointers

e Many efficient data structures only modify a small! subset of the
entities at once.
@ masking their pointer modifications through a sparse mask

(t) € {0, 1} for each node that is generated by a masking network :

P (Hgt) _ 1) — (Zl{t)’ h’(t)> (4)
@ 1 is the logistic sigmoid function,
@ threshold the output of ¢ as follows:

1 =1, (0 79505 (5)

@ The PGN now re-estimates the pointer adjacency matrix M) using
.

1

qft) = Wq/_;l(t) l?,.(t) = Wk/_;,(t) ff) = softmax; (<E]§t) E(t)>)
(6)

Typically on the order of O(log n) elements.

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

PGN Architecture: Learning Pointers

(5 _ {0, {0
ne = ny v

n® — ,Op=1) (1)
/A i ij + (1) >Hj_argmaxk(oc§;)) ij
(7)

o direct supervision with respect to ground-truth pointers, N, of a

target data structure.
e Applying ,ugt) effectively masks out parts of the computation graph
for Equation 6, yielding a graph attention network-style update.

Presenter: Arshdeep Sekhon https://qdata.

Pointer Graph Networks

Petar Velickovic, Lars Buesing, Matthew C. C

https://qdata.github.io/deep2Read

PGN Optimization

“«~n~ne

@ query loss from yt

(

@ cross entropy from attention a,-jt)
(1)

i

vs ground truth pointers

@ cross entropy from attention p:’ vs ground truth masks

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

Dynamic Graph Connectivity

@ Task: Is there a path between (u,v) in given Graph?
@ subroutine in

e Minimum Spanning Trees
e Maximum Flows

@ For example, in Kruskal's algorithm

algorithm Kruskal(G) is

F:= @
for each v € G.V do
MAKE-SET (V)

for each (u, v) in G.E ordered by weight(u, v), increasing do
if FIND-SET(u) # FIND-SET(v) then
F:=F U {(u, v)}
UNION(FIND-SET(u), FIND-SET(V))
return F

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

Dynamic Graph Connectivity

undirected and unweighted graphs of n nodes
Gt = (V,EY)
E°=¢

Et = Et"Yu, v}, is the symmetric difference operator

y*t: Is there a path between (u, v) in given Graph G'?

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

Incremental Graph Connectivity

@ edges can only be added to the graph

@ as edges cant removed, combining disconnected components is simply
set union

@ maintain disjoint sets

e find(u, v) if connected, check if the nodes (u, v) are in the same set

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

Incremental Graph Connectivity: Disjoint Set Union Data

structure
INITA(H) UNION(u, v)
I =u 1 = = FIND(u) QUERY-UNION(u, v)
2 ra~UOY) 2 y = FIND(v) 1 if FIND(u) = FIND(v)
FIND (u) 3 ifz#y 2 return 0 / 3 =0
1 iff,#£u 4 ifre <ry 3 else UNION(u,v)
Y ftz = MO
2 #u = FIND(#4) 2 else :: - z 4 returnl/ g =1

3 return 7,

@ DSU represents sets as rooted trees—each node, u, has a parent
pointer, m,

o the set identifier will be its root node, p,, which by convention points
to itself (7, = pu)-

@ find(u) reduces to recursively calling find(pi[u]) until the root is
reached.

@ path compression is applied: upon calling find(u), all nodes on the
path from u to u will point to u.

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

Incremental Graph Connectivity: Disjoint Set Union Data

structure

@ at each step t, call query-union(u, v),

@ operation descriptions ef = ri||li—,i=,, containing the nodes’
priorities, and a binary feature indicating which nodes are u and v.

@ The corresponding output y! indicates the return value of the
query — union(u, v).

e supervision for the PGN's (asymmetric) pointers: 7/(i.e., I'Ig.t) =1 iff

i (t) _

' = j else I'I,-j =0

(t)

@ Ground-truth mask values, fi; ’ are set to O for only the paths from u

and v to their respective roots—no other node's state is changed

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

Fully dynamic tree connectivity with link/cut trees

QUERY-TOGGLE(u,v)
ifr, <y
SWAP(u, v)
EVERT(u) O,
if FIND-ROOT(v) # u
LINK(u,v)
return 0 / § =0
else CUT(v)
return 1 / §® =1

O0—®
O—@*xP | ©O—

00 NN AWM=
O——0) | QO
O—=)

0—0
© ©
O—O0—B| O—0—0L

O

©

@ The operations supported by LCTs are: find-root(u) retrieves the root
of node u;

@ link(u, v) links nodes u and v, with the precondition that u is the root
of its own tree; cut(v) removes the edge from v to its parent;

@ evert(u) re-roots u's tree, such that u becomes the new root.

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

Fully dynamic tree connectivity with link/cut trees

@ , here we will compress updates and queries into one operation,
querytoggle(u, v), which our models will attempt to support.

@ This operation first calls evert(u), then checks if u and v are
connected: if they are not, adding the edge between them wouldn’t
introduce cycles (and u is now the root of its tree), so link(u, v) is
performed.

@ Otherwise, cut(v) is performed—it is guaranteed to succeed, as v is
not going to be the root node.

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

Fully dynamic tree connectivity with link/cut trees

@ encode each query-toggle(u, v) as e(t)i = rj||li=uji=v.

@ we supervise the asymmetric pointers: 7' and ground-truth mask
values, it | are set to 0 only if 7' is modified in the operation at time
t.

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

Experimental Evaluation: Data Generation

@ out of distribution generalization: train on n =20, ops = 30

@ test on n =50,0ps = 75 and n = 100, ops = 150

@ Ntrain = 15, Ntest = 35, Nyalig = 35

@ sample u, v randomly at each time t

o Generate ground truth y°, i}, ik by running query — union(u,v) and

query — toggle(u, v)
@ Training k = 32 features for each layer

@ measure F; score on valid for same setting as training to select
validation performance

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

Baselines

FC-GNN : only query loss is used
DeepSets: A" =1

PGN-NM (without masks): jif =0
@ Ablations

At .

o Oracle-Ptrs: T1 are the ground truth pointers

o PGN-Ptrs: Learn a PGN on the training set. Apply on all sets. Retrain
on only query answering on the learnt pointers.

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

Results

Table 1: F; scores on the dynamic graph connectivity tasks for all models considered, on five random
seeds. All models are trained on n = 20, ops = 30 and tested on larger test sets.

Disjoint-set union

Link/cut tree

Model n =20 n = 50 n =100 n =20 n = 50 n =100
ops = 30 ops=T75 ops=150 ops=30 ops =75 ops =150
GNN 0.892+.007 0.851+.0as 0.733+.114 0.558+.0a¢ 0.510+.070 0.401+.125
Deep Sets 0.870+.020 0.720+.132 0.547+.217 0.5152.0s0 0.488+.07a 0.441+.06s
PGN-NM 0.910+.011 0.628+.0n 0.499:.006 0.524+.063 0.367+.01s 0.353+.020
PGN 0.895+.006 0.887+.00s 0.866+.011 0.651+017 0.624+.006 0.616+.000
PGN-Ptrs 0.902+.010 0.902+.00s 0.889+.007 0.630+.022 0.603+.036 0.546+.110
Oracle-Ptrs 0.944+ 006 0.964+.007 0.968+.013 0.776+.011 0.744+ 026 0.636+.065

Table 2: Pointer and mask accuracies of the PGN model w.r.t.

. ground-truth pointers.

Disjoint-set union Link/cut tree
Accuracy of n =20 n =50 n = 100 n =20 n =50 n =100
ops=30 ops=75 ops=150 ops=30 ops=75 ops=150
Pointers (NM) 80.3+2.2% 32.9+2.7% 20.3+3.7% 61.315.1% 17.8+3.3% 8.4+2.%
Pointers 76.9133% 64.Ti66% 55.0+as% 60.0x13% 54.T+10% 53.2422%
Masks 95.040.9% 96.4+0.6% 97.3+0.4% 82.840.9% 86.8+1.1% 91.1+1.0%

Pointer Graph Networks

Petar Velickovic, Lars Buesing, Matthew C. C

Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

Results: Rollout analysis of PGN Pointers

999999
2 9999 o 0 o
99D oSRO

& oo

Figure 4: Visualisation of a PGN rollout on the DSU setup, for a pathological ground-truth case of
repeated union(i, i+1) (Left). The first few pointers in II*) are visualised (Middle) as well as the
final state (Right)—the PGN produced a valid DSU at all times, but 2x shallower than ground-truth.

@ bad graph but good performance

@ During rollout, the PGN models a correct DSU at all times, but
halving its depth—easing GNN usage and GPU parallelisability.

@ explains the reduced performance gap of PGNs to Oracle-Ptrs on
LCT; as LCTs cannot apply path-compression-like tricks, the
ground-truth LCT pointer graphs are expected to be of substantially
larger diameters as test set size increases.

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

Conclusion

@ Goal: learning a latent graph for answering classical algorithmic
queries

@ How: supervision from classical data structures, inductive biases from
theoretical CS

@ Results: out of distribution generalization, interpretable and
parallelizable data structures for challenging graph connectivity tasks

Petar Velickovic, Lars Buesing, Matthew C. C Pointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.

https://qdata.github.io/deep2Read

