Pointer Graph Networks

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles Blundell

Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read

Petar Velickovic, Lars Buesing, Matthew C. C

Pointer Graph Networks

Presenter: Arshdeep Sekhon https://qdata.

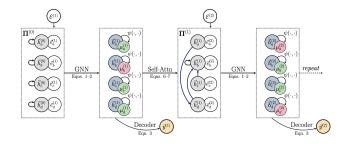
- ullet (1) Solving classical graph algorithms known to be hard for GNNs
- (2) Graph specification for GNNs:
 - $\bullet\,$ prespecified: we can use fully connected but doesnt work for large p
 - hand designed: can be error or bias prone
- Solution: Learning data driven graph:
 - scalability 2^p graphs
 - error term because of message or wrong graph

ullet (1) Solving classical graph algorithms known to be hard for GNNs

- more difficult algorithms compared to previous work
- out of distribution generalization
- (2) Graph specification for GNNs:
 - supervision from known graphs
 - scalable
 - $\bullet\,$ node masking to encourage sparsity instead of ℓ_1 regularization
 - Use both $A_{partially known} + A_{learnt}$

- latent graph inference
- for classical graph algorithms
- out of distribution generalization

PGN Architecture

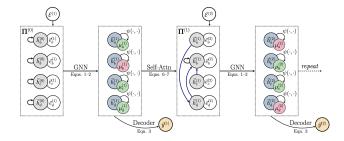


- Assume an underlying set of *n* entities.
- Given are sequences of inputs $\mathcal{E}^{(1)}, \mathcal{E}^{(2)}, \ldots$ where $\mathcal{E}^{(t)} = (\vec{e}_1^{(t)}, \vec{e}_2^{(t)}, \ldots, \vec{e}_n^{(t)})$ for $t \ge 1$ is defined by a list of feature vectors $\vec{e}_i^{(t)} \in \mathbb{R}^m$ for every entity $i \in \{1, \ldots, n\}$.
- Sequential Prediction Task: predicting target outputs $\vec{y}^{(t)} \in \mathbb{R}^{l}$ based on operation sequence $\mathcal{E}^{(1)}, \ldots, \mathcal{E}^{(t)}$ up to t.

Dynamic Graph Connectivity: Are two vertices connected?

- inputs/ operations $\vec{e}_i^{(t)}$
- outputs y
 ^(t): binary indicators of whether pairs of vertices are connected.

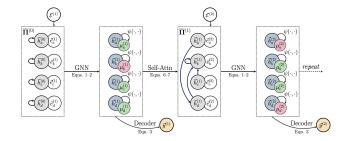
PGN Architecture



• Sequential prediction task: history of operations for all entities

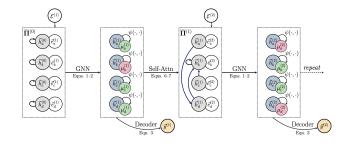
• defined on unordered set of entities: permutation invariant!

PGN Architecture: Three Parts



- Encoder
- Processor
- Decoder

PGN Architecture: Initialization

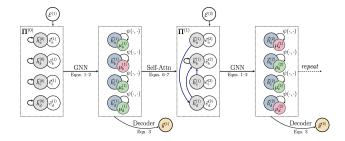


- PGN computes latent features $\vec{h}_i^{(t)} \in \mathbb{R}^k$ for each entity *i*. Initially, $\vec{h}_i^{(0)} = \vec{0}$.
- dynamic *pointers*: pointer adjacency matrix $\Pi^{(t)} \in \mathbb{R}^{n \times n}$.
- Pointers correspond to undirected edges between two entities: indicating that one of them points to the other. $\Pi^{(t)}$ is a binary symmetric matrix, Initially, each node points to itself: $\Pi^{(0)} = I_{n}$.

Petar Velickovic, Lars Buesing, Matthew C. C

Pointer Graph Networks

PGN Architecture: Encoder



• Encoder f:

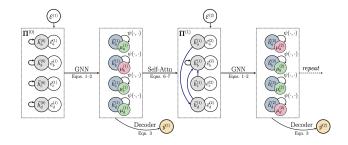
$$\vec{z}_{i}^{(t)} = f\left(\vec{e}_{i}^{(t)}, \vec{h}_{i}^{(t-1)}\right)$$
 (1)

Petar Velickovic, Lars Buesing, Matthew C. C

Pointer Graph Networks

Presenter: Arshdeep Sekhon https://qdata.

PGN Architecture: Processor

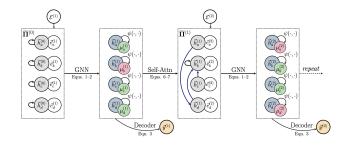


• *processor network*, *P*, which takes into account the current pointer adjacency matrix as relational information:

$$\mathsf{H}^{(t)} = P\left(\mathsf{Z}^{(t)}, \mathsf{\Pi}^{(t-1)}\right) \tag{2}$$

yielding next-step latent features, $H^{(t)} = (\vec{h}_1^{(t)}, \vec{h}_2^{(t)}, \dots, \vec{h}_n^{(t)});$

PGN Architecture: Decoder



• These latents can be used to answer set-level queries using a *decoder* network *g*:

$$\vec{y}^{(t)} = g\left(\bigoplus_{i} \vec{z}_{i}^{(t)}, \bigoplus_{i} \vec{h}_{i}^{(t)}\right)$$
(3)

where \bigoplus is any permutation-invariant *readout* aggregator, such as summation or maximisation.

Petar Velickovic, Lars Buesing, Matthew C. C

Pointer Graph Networks

Presenter: Arshdeep Sekhon https://qdata

PGN Architecture: Learning Pointers

- Many efficient data structures only modify a small¹ subset of the entities at once.
- masking their pointer modifications through a sparse mask $\mu_i^{(t)} \in \{0, 1\}$ for each node that is generated by a masking network ψ :

$$\mathbb{P}\left(\mu_i^{(t)} = 1\right) = \psi\left(\vec{z}_i^{(t)}, \vec{h}_i^{(t)}\right) \tag{4}$$

- ψ is the logistic sigmoid function,
- \bullet threshold the output of ψ as follows:

$$\mu_i^{(t)} = \mathbb{I}_{\psi\left(\vec{z}_i^{(t)}, \vec{h}_i^{(t)}\right) > 0.5}$$
(5)

• The PGN now re-estimates the pointer adjacency matrix $\Pi^{(t)}$ using $\vec{h}_i^{(t)}$.

$$\vec{q}_i^{(t)} = \mathsf{W}_q \vec{h}_i^{(t)} \qquad \vec{k}_i^{(t)} = \mathsf{W}_k \vec{h}_i^{(t)} \qquad \alpha_{ij}^{(t)} = \operatorname{softmax}_j \left(\left\langle \vec{q}_i^{(t)}, \vec{k}_j^{(t)} \right\rangle \right)$$

¹Typically on the order of $O(\log n)$ elements.

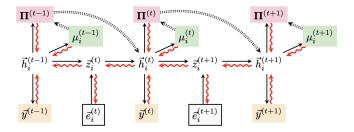
(6

۲

$$\widetilde{\Pi}_{ij}^{(t)} = \mu_i^{(t)} \widetilde{\Pi}_{ij}^{(t-1)} + \left(1 - \mu_i^{(t)}\right) \mathbb{I}_{j=\operatorname{argmax}_k\left(\alpha_{ik}^{(t)}\right)} \qquad \Pi_{ij}^{(t)} = \widetilde{\Pi}_{ij}^{(t)} \vee \widetilde{\Pi}_{ji}^{(t)}$$
(7)

- direct supervision with respect to ground-truth pointers, Π^(t), of a target data structure.
- Applying $\mu_i^{(t)}$ effectively masks out parts of the computation graph for Equation 6, yielding a graph attention network-style update.

PGN Optimization



- query loss from y^t
- cross entropy from attention $\alpha_{ii}^{(t)}$ vs ground truth pointers
- cross entropy from attention $\mu_i^{(t)}$ vs ground truth masks

Dynamic Graph Connectivity

- Task: Is there a path between (u, v) in given Graph?
- subroutine in
 - Minimum Spanning Trees
 - Maximum Flows
- For example, in Kruskal's algorithm

```
algorithm Kruskal(G) is
F:= Ø
for each v ∈ G.V do
    MAKE-SET(v)
for each (u, v) in G.E ordered by weight(u, v), increasing do
    if FIND-SET(u) ≠ FIND-SET(v) then
        F:= F U {(u, v)}
        UNION(FIND-SET(u), FIND-SET(v))
return F
```

- undirected and unweighted graphs of n nodes
- $G^t = (V, E^t)$
- $E^0 = \phi$
- $E^t = E^{t-1}\{u, v\}$, is the symmetric difference operator
- \hat{y}^t : Is there a path between (u, v) in given Graph G^t ?

- edges can only be added to the graph
- as edges cant removed, combining disconnected components is simply set union
- maintain disjoint sets
- find(u, v) if connected, check if the nodes (u, v) are in the same set

Incremental Graph Connectivity: Disjoint Set Union Data structure

- DSU represents sets as rooted trees—each node, u, has a parent pointer, π_u
- the set identifier will be its root node, ρ_u , which by convention points to itself $(\pi_{\rho_u} = \rho_u)$.
- find(u) reduces to recursively calling find(pi[u]) until the root is reached.
- path compression is applied: upon calling find(u), all nodes on the path from u to u will point to u.

Petar Velickovic, Lars Buesing, Matthew C. C

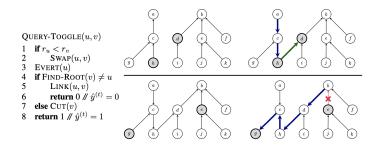
Pointer Graph Networks

Presenter: Arshdeep Sekhon https://qdata.

Incremental Graph Connectivity: Disjoint Set Union Data structure

- at each step t, call query-union(u, v),
- operation descriptions e^t_i = r_i || I_{i=u↓i=v}, containing the nodes' priorities, and a binary feature indicating which nodes are u and v.
- The corresponding output \hat{y}^t indicates the return value of the query union(u, v).
- supervision for the PGN's (asymmetric) pointers: $\pi^{i}(i.e.,\Pi_{ij}^{(t)}=1$ iff $\pi^{i}=j$ else $\Pi_{ij}^{(t)}=0$
- Ground-truth mask values, $\hat{\mu}_i^{(t)}$ are set to 0 for only the paths from u and v to their respective roots—no other node's state is changed

Fully dynamic tree connectivity with link/cut trees



- The operations supported by LCTs are: find-root(u) retrieves the root of node u;
- link(u, v) links nodes u and v, with the precondition that u is the root of its own tree; cut(v) removes the edge from v to its parent;
- evert(u) re-roots u's tree, such that u becomes the new root.

- , here we will compress updates and queries into one operation, querytoggle(u, v), which our models will attempt to support.
- This operation first calls evert(u), then checks if u and v are connected: if they are not, adding the edge between them wouldn't introduce cycles (and u is now the root of its tree), so link(u, v) is performed.
- Otherwise, cut(v) is performed—it is guaranteed to succeed, as v is not going to be the root node.

- encode each query-toggle(u, v) as $e(t)i = r_i ||I_{i=u \downarrow i=v}$.
- we supervise the asymmetric pointers: π^i and ground-truth mask values, $\hat{\mu}_i^t$, are set to 0 only if π^i is modified in the operation at time t.

- out of distribution generalization: train on n = 20, ops = 30
- test on n = 50, ops = 75 and n = 100, ops = 150
- $n_{train} = 75$, $n_{test} = 35$, $n_{valid} = 35$
- sample *u*, *v* randomly at each time *t*
- Generate ground truth \hat{y}^t , $\hat{\mu}_i^t$, $\hat{\Pi}^t$ by running query union(u, v) and query toggle(u, v)
- Training k = 32 features for each layer
- measure *F*₁ score on valid for same setting as training to select validation performance

- FC-GNN : only query loss is used
- DeepSets: $\hat{\Pi}^t = I$
- PGN-NM (without masks): $\hat{\mu}_i^t = 0$
- Ablations
 - Oracle-Ptrs: $\hat{\Pi}^t$ are the ground truth pointers
 - PGN-Ptrs: Learn a PGN on the training set. Apply on all sets. Retrain on only query answering on the learnt pointers.

Results

	Disjoint-set union			Link/cut tree			
Model	$\begin{array}{c} n=20\\ \mathrm{ops}=30 \end{array}$	n = 50 ops = 75	$\begin{array}{c} n = 100 \\ \mathrm{ops} = 150 \end{array}$	$\begin{array}{l}n=20\\ \mathrm{ops}=30\end{array}$	$\begin{array}{c} n = 50 \\ \mathrm{ops} = 75 \end{array}$	$\begin{array}{l}n=100\\ \mathrm{ops}=150\end{array}$	
GNN Deep Sets PGN-NM PGN	$\begin{array}{c} 0.892 {\scriptstyle \pm .007} \\ 0.870 {\scriptstyle \pm .029} \\ \textbf{0.910} {\scriptstyle \pm .011} \\ 0.895 {\scriptstyle \pm .006} \end{array}$	$\begin{array}{c} 0.851 \scriptstyle \pm .048 \\ 0.720 \scriptstyle \pm .132 \\ 0.628 \scriptstyle \pm .071 \\ 0.887 \scriptstyle \pm .008 \end{array}$	$\begin{array}{c} 0.733 \pm .114 \\ 0.547 \pm .217 \\ 0.499 \pm .096 \\ \textbf{0.866} \pm .011 \end{array}$	$\begin{array}{c} 0.558 \scriptstyle \pm .044 \\ 0.515 \scriptstyle \pm .080 \\ 0.524 \scriptstyle \pm .063 \\ \textbf{0.651} \scriptstyle \pm .017 \end{array}$	$\begin{array}{c} 0.510 \scriptstyle \pm .079 \\ 0.488 \scriptstyle \pm .074 \\ 0.367 \scriptstyle \pm .018 \\ \textbf{0.624} \scriptstyle \pm .016 \end{array}$	$\begin{array}{c} 0.401 \pm .123 \\ 0.441 \pm .068 \\ 0.353 \pm .029 \\ \textbf{0.616} \pm .009 \end{array}$	
PGN-Ptrs Oracle-Ptrs	$\begin{array}{c} 0.902 \scriptstyle \pm .010 \\ 0.944 \scriptstyle \pm .006 \end{array}$	$\begin{array}{c} 0.902 \scriptstyle \pm .008 \\ 0.964 \scriptstyle \pm .007 \end{array}$	$\begin{array}{c} 0.889 _{\pm .007} \\ 0.968 _{\pm .013} \end{array}$	$\begin{array}{c} 0.630 \scriptstyle \pm .022 \\ 0.776 \scriptstyle \pm .011 \end{array}$	$0.603 \scriptstyle \pm .036 \\ 0.744 \scriptstyle \pm .026 \\$	$\begin{array}{c} 0.546 \scriptstyle \pm .110 \\ 0.636 \scriptstyle \pm .065 \end{array}$	

Table 1: F_1 scores on the dynamic graph connectivity tasks for all models considered, on five random seeds. All models are trained on n = 20, ops = 30 and tested on larger test sets.

Table 2: Pointer and mask accuracies of the PGN model w.r.t. ground-truth pointers.

	Disjoint-set union			Link/cut tree		
Accuracy of	n = 20	n = 50	n = 100	n = 20	n = 50	n = 100
	ops = 30	ops = 75	ops = 150	ops = 30	ops = 75	ops = 150
Pointers (NM)	$80.3{\scriptstyle \pm 2.2\%}$	$32.9_{\pm 2.7\%}$	$20.3_{\pm 3.7\%}$	$61.3{\scriptstyle \pm 5.1\%}$	17.8±3.3%	$8.4_{\pm 2.1\%}$
Pointers	$76.9{\scriptstyle \pm 3.3\%}$	$64.7_{\pm 6.6\%}$	$55.0_{\pm 4.8\%}$	$60.0_{\pm 1.3\%}$	$54.7_{\pm 1.9\%}$	$53.2_{\pm 2.2\%}$
Masks	$95.0{\scriptstyle \pm 0.9\%}$	$96.4{\scriptstyle \pm 0.6\%}$	$97.3{\scriptstyle \pm 0.4\%}$	$82.8{\scriptstyle \pm 0.9\%}$	$86.8{\scriptstyle \pm 1.1\%}$	$91.1{\scriptstyle \pm 1.0\%}$

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Results: Rollout analysis of PGN Pointers

Figure 4: Visualisation of a PGN rollout on the DSU setup, for a pathological ground-truth case of repeated union(1, 1+1) (Left). The first few pointers in $\Pi^{(t)}$ are visualised (Middle) as well as the final state (**Kight**)—the PGN produced a valid DSU at all times, but 2× shallower than ground-truth.

- bad graph but good performance
- During rollout, the PGN models a correct DSU at all times, but halving its depth—easing GNN usage and GPU parallelisability.
- explains the reduced performance gap of PGNs to Oracle-Ptrs on LCT; as LCTs cannot apply path-compression-like tricks, the ground-truth LCT pointer graphs are expected to be of substantially larger diameters as test set size increases.

- Goal: learning a latent graph for answering classical algorithmic queries
- How: supervision from classical data structures, inductive biases from theoretical CS
- Results: out of distribution generalization, interpretable and parallelizable data structures for challenging graph connectivity tasks