
Pointer Graph Networks

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu,
Oriol Vinyals, Charles Blundell

Presenter: Arshdeep Sekhon
https://qdata.github.io/deep2Read

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 1 / 28

https://qdata.github.io/deep2Read
https://qdata.github.io/deep2Read

Motivation

(1) Solving classical graph algorithms known to be hard for GNNs

(2) Graph specification for GNNs:

prespecified: we can use fully connected but doesnt work for large p
hand designed: can be error or bias prone

Solution: Learning data driven graph:

scalability 2p graphs
error term because of message or wrong graph

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 2 / 28

https://qdata.github.io/deep2Read

PGNs vs Related work

(1) Solving classical graph algorithms known to be hard for GNNs

more difficult algorithms compared to previous work
out of distribution generalization

(2) Graph specification for GNNs:

supervision from known graphs
scalable
node masking to encourage sparsity instead of `1 regularization
Use both Apartially known + Alearnt

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 3 / 28

https://qdata.github.io/deep2Read

PGN Key Contributions

latent graph inference

for classical graph algorithms

out of distribution generalization

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 4 / 28

https://qdata.github.io/deep2Read

PGN Architecture

Assume an underlying set of n entities.

Given are sequences of inputs E(1), E(2), . . . where

E(t) = (~e
(t)
1 , ~e

(t)
2 , . . . , ~e

(t)
n) for t ≥ 1 is defined by a list of feature

vectors ~e
(t)
i ∈ Rm for every entity i ∈ {1, . . . , n}.

Sequential Prediction Task: predicting target outputs ~y (t) ∈ Rl based
on operation sequence E(1), . . . , E(t) up to t.

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 5 / 28

https://qdata.github.io/deep2Read

Example Task: Dynamic Graph Connectivity

Dynamic Graph Connectivity: Are two vertices connected?

inputs/ operations ~e
(t)
i

outputs ~y (t): binary indicators of whether pairs of vertices are
connected.

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 6 / 28

https://qdata.github.io/deep2Read

PGN Architecture

Sequential prediction task: history of operations for all entities

defined on unordered set of entities: permutation invariant!

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 7 / 28

https://qdata.github.io/deep2Read

PGN Architecture: Three Parts

Encoder

Processor

Decoder

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 8 / 28

https://qdata.github.io/deep2Read

PGN Architecture: Initialization

PGN computes latent features ~h
(t)
i ∈ Rk for each entity i . Initially,

~h
(0)
i = ~0.

dynamic pointers: pointer adjacency matrix Π(t) ∈ Rn×n.

Pointers correspond to undirected edges between two entities:
indicating that one of them points to the other. Π(t) is a binary
symmetric matrix, Initially, each node points to itself: Π(0) = In.

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 9 / 28

https://qdata.github.io/deep2Read

PGN Architecture: Encoder

Encoder f :
~z
(t)
i = f

(
~e
(t)
i , ~h

(t−1)
i

)
(1)

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 10 / 28

https://qdata.github.io/deep2Read

PGN Architecture: Processor

processor network, P, which takes into account the current pointer
adjacency matrix as relational information:

H(t) = P
(

Z(t),Π(t−1)
)

(2)

yielding next-step latent features, H(t) = (~h
(t)
1 , ~h

(t)
2 , . . . , ~h

(t)
n);

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 11 / 28

https://qdata.github.io/deep2Read

PGN Architecture: Decoder

These latents can be used to answer set-level queries using a decoder
network g :

~y (t) = g

(⊕
i

~z
(t)
i ,
⊕
i

~h
(t)
i

)
(3)

where
⊕

is any permutation-invariant readout aggregator, such as
summation or maximisation.

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 12 / 28

https://qdata.github.io/deep2Read

PGN Architecture: Learning Pointers

Many efficient data structures only modify a small1 subset of the
entities at once.

masking their pointer modifications through a sparse mask

µ
(t)
i ∈ {0, 1} for each node that is generated by a masking network ψ:

P
(
µ
(t)
i = 1

)
= ψ

(
~z
(t)
i , ~h

(t)
i

)
(4)

ψ is the logistic sigmoid function,

threshold the output of ψ as follows:

µ
(t)
i = I

ψ
(
~z
(t)
i ,~h

(t)
i

)
>0.5

(5)

The PGN now re-estimates the pointer adjacency matrix Π(t) using
~h
(t)
i .

~q
(t)
i = Wq

~h
(t)
i

~k
(t)
i = Wk

~h
(t)
i α

(t)
ij = softmaxj

(〈
~q
(t)
i , ~k

(t)
j

〉)
(6)

1Typically on the order of O(log n) elements.
Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 13 / 28

https://qdata.github.io/deep2Read

PGN Architecture: Learning Pointers

Π̃
(t)
ij = µ

(t)
i Π̃

(t−1)
ij +

(
1− µ(t)i

)
I
j=argmaxk

(
α
(t)
ik

) Π
(t)
ij = Π̃

(t)
ij ∨ Π̃

(t)
ji

(7)

direct supervision with respect to ground-truth pointers, Π̂(t), of a
target data structure.

Applying µ
(t)
i effectively masks out parts of the computation graph

for Equation 6, yielding a graph attention network-style update.

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 14 / 28

https://qdata.github.io/deep2Read

PGN Optimization

query loss from y t

cross entropy from attention α
(t)
ij vs ground truth pointers

cross entropy from attention µ
(t)
i vs ground truth masks

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 15 / 28

https://qdata.github.io/deep2Read

Dynamic Graph Connectivity

Task: Is there a path between (u, v) in given Graph?

subroutine in

Minimum Spanning Trees
Maximum Flows

For example, in Kruskal’s algorithm

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 16 / 28

https://qdata.github.io/deep2Read

Dynamic Graph Connectivity

undirected and unweighted graphs of n nodes

G t = (V ,E t)

E 0 = φ

E t = E t−1{u, v} , is the symmetric difference operator

ŷ t : Is there a path between (u, v) in given Graph G t?

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 17 / 28

https://qdata.github.io/deep2Read

Incremental Graph Connectivity

edges can only be added to the graph

as edges cant removed, combining disconnected components is simply
set union

maintain disjoint sets

find(u, v) if connected, check if the nodes (u, v) are in the same set

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 18 / 28

https://qdata.github.io/deep2Read

Incremental Graph Connectivity: Disjoint Set Union Data
structure

DSU represents sets as rooted trees—each node, u, has a parent
pointer, πu

the set identifier will be its root node, ρu, which by convention points
to itself (πρu = ρu).

find(u) reduces to recursively calling find(pi[u]) until the root is
reached.

path compression is applied: upon calling find(u), all nodes on the
path from u to u will point to u.

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 19 / 28

https://qdata.github.io/deep2Read

Incremental Graph Connectivity: Disjoint Set Union Data
structure

at each step t, call query-union(u, v),

operation descriptions eti = ri ||Ii=u↓i=v , containing the nodes’
priorities, and a binary feature indicating which nodes are u and v.

The corresponding output ŷ t indicates the return value of the
query − union(u, v).

supervision for the PGN’s (asymmetric) pointers: πi (i .e.,Π
(t)
ij = 1 iff

πi = j else Π
(t)
ij = 0

Ground-truth mask values, µ̂
(t)
i are set to 0 for only the paths from u

and v to their respective roots—no other node’s state is changed

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 20 / 28

https://qdata.github.io/deep2Read

Fully dynamic tree connectivity with link/cut trees

The operations supported by LCTs are: find-root(u) retrieves the root
of node u;

link(u, v) links nodes u and v, with the precondition that u is the root
of its own tree; cut(v) removes the edge from v to its parent;

evert(u) re-roots u’s tree, such that u becomes the new root.

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 21 / 28

https://qdata.github.io/deep2Read

Fully dynamic tree connectivity with link/cut trees

, here we will compress updates and queries into one operation,
querytoggle(u, v), which our models will attempt to support.

This operation first calls evert(u), then checks if u and v are
connected: if they are not, adding the edge between them wouldn’t
introduce cycles (and u is now the root of its tree), so link(u, v) is
performed.

Otherwise, cut(v) is performed—it is guaranteed to succeed, as v is
not going to be the root node.

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 22 / 28

https://qdata.github.io/deep2Read

Fully dynamic tree connectivity with link/cut trees

encode each query-toggle(u, v) as e(t)i = ri ||Ii=u↓i=v .

we supervise the asymmetric pointers: πi and ground-truth mask
values, µ̂ti , are set to 0 only if πi is modified in the operation at time
t.

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 23 / 28

https://qdata.github.io/deep2Read

Experimental Evaluation: Data Generation

out of distribution generalization: train on n = 20 , ops = 30

test on n = 50, ops = 75 and n = 100, ops = 150

ntrain = 75, ntest = 35, nvalid = 35

sample u, v randomly at each time t

Generate ground truth ŷ t , µ̂ti , Π̂
t

by running query − union(u, v) and
query − toggle(u, v)

Training k = 32 features for each layer

measure F1 score on valid for same setting as training to select
validation performance

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 24 / 28

https://qdata.github.io/deep2Read

Baselines

FC-GNN : only query loss is used

DeepSets: Π̂
t

= I

PGN-NM (without masks): µ̂ti = 0

Ablations

Oracle-Ptrs: Π̂
t

are the ground truth pointers
PGN-Ptrs: Learn a PGN on the training set. Apply on all sets. Retrain
on only query answering on the learnt pointers.

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 25 / 28

https://qdata.github.io/deep2Read

Results

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 26 / 28

https://qdata.github.io/deep2Read

Results: Rollout analysis of PGN Pointers

bad graph but good performance

During rollout, the PGN models a correct DSU at all times, but
halving its depth—easing GNN usage and GPU parallelisability.

explains the reduced performance gap of PGNs to Oracle-Ptrs on
LCT; as LCTs cannot apply path-compression-like tricks, the
ground-truth LCT pointer graphs are expected to be of substantially
larger diameters as test set size increases.

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 27 / 28

https://qdata.github.io/deep2Read

Conclusion

Goal: learning a latent graph for answering classical algorithmic
queries

How: supervision from classical data structures, inductive biases from
theoretical CS

Results: out of distribution generalization, interpretable and
parallelizable data structures for challenging graph connectivity tasks

Petar Velickovic, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles BlundellPointer Graph Networks Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 28 / 28

https://qdata.github.io/deep2Read

