Subgraph Neural Networks

Emily Alsentzer, Samuel G. Finlayson, Michelle M. Li, Marinka Zitnik

Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read

Subgraph Property Prediction

- Given Graph G = (V, E) and subgraph G' = (V', E') where $V' \subseteq V$ and $E' \subseteq E$.
- Each subgraph S has a label y^S and many S^C which is a set of nodes in S that are connected to each other by a path.
- The task : if a subgraph has a specific property or not Graph G: subgraphs defined by node membership

Figure: colors indicate labels

Why are subgraph property prediction challenging?

- make joint predictions over larger structures of varying sizes: do not correspond to simple k-hop, possibly disconnected and far off
- higher-order connectivity patterns: how nodes within the subgraph interact and how they interact with nodes outside the subgraph (border and extenral nodes)
- subgraphs can be localized within a region of the graph or spread out: learn about the subgraph positions within the graph

subgraphs share edges and non edges

Formulating Subgraph Prediction

subgraph problem

Given subgraphs (S_1, \ldots, S_n) the task is to get embeddings $z_S \in R^{d_S}$ for every subgraph S. SUB-GNN uses a GNN to learn a classifier $f : S \to \{1, \ldots, C\} f(S) = \hat{y}_S$.

Difference from other gnns: operates directly on components

Subgraph Properties to encode

network properties that are not necessarily defined for either nodes or graphs.

		-	
SUB-GNN Channel	SUB-GNN Subchannel		
	Internal (I)	Border (B)	
Position (P)	Distance between S_i 's components	Distance between S_i and rest of G	
Neighborhood (N)	Identity of S_i 's internal nodes	Identity of S_i 's border nodes	
Structure (S)	Internal connectivity of S_i	Border connectivity of S_i	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

subgraph properties: position

- border position: distance to the rest of G
- ▶ internal: distance between the components of G

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

subgraph properties: neighborhood

border neighborhood: nodes within k-hops of any node in S, each component has its own border neighborhood

internal neighborhood

subgraph properties: structure

- internal : internal connectivity of each subgraph
- border: edges connecting internal nodes to border neighborhood

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

sub graph level message passing: Anchor Patches

$$\blacktriangleright \mathbb{A} = (A^1, \dots, A^Q)$$

anchor patches are subgraphs sampled from G specific to each channel : P, N and S

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

sub graph level message passing: Anchor Patches to subgraph components

$$\blacktriangleright \mathbb{A} = (A^1, \dots, A^Q)$$

anchor patches are subgraphs sampled from G specific to each channel : P, N and S

$$\blacktriangleright MSG_{X,C} = \gamma_x(A_X, S^C)p_X$$

• γ is a similarity function for channel X

•
$$\boldsymbol{a}_{X,c} = AGG_M(MSG_X(S^C, A_X, p_X)) \forall A_X in \mathbb{A}_X$$

• $\boldsymbol{h}'_{X,c} = \sigma(\boldsymbol{W}_h[\boldsymbol{a}_{X,c}; \boldsymbol{h}'^{-1}_{X,c}])$

Property-aware output representations

- a matrix *M_X* where each row is an anchor set message computed by *MSG_X*
- **>** pass through a non linear activation function to get $z_{x,c}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

► for neighborhood: use $z_{N,c} = h_{N,c}$

Agregating Property-aware output representations

- \triangleright $z_{x,c}$ for a channel x and a subgraph component c
- First aggregate using channel aggregator AGG_C
- Then aggregate using layer aggregator AGG_L
- now we have z_c
- **•** READOUT from z_c to z_s
- Finally, SUB-GNN routes messages for internal and border properties (i.e., {P_I, P_B}, {N_I, N_B}, {S_I, S_B}) within subchannels for each channel P, N and S, and concatenates the final outputs

A, p_X , γ

- Sampling anchor patches
- Neural encoding of anchor patches
- Estimating similarity of anchor patches.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sampling anchor patches

$$\blacktriangleright \phi_X : (G, S^C) \to A_X$$

- ► Internal position sampler node u_P ∈ S, shared across all components in S
- ▶ Border position sampler node $v_P \in G$ shared across all S
- ▶ Neighborhood internal sampler node $u_N \in S^C$
- ▶ Neighborhood border sampler node $v_N \in k hop \text{ of } S^C$
- structure anchor sampler : connected component sampled from G via triangular random walks

Neural encoding of anchor patches

For position and neighborhood anchor patches, same as initial node embeddings :

$$\psi_{N} = \psi_{p} = N_{i} \tag{1}$$

For structure nodes:

$$\psi_{\mathcal{S}}: \mathcal{A}_{\mathcal{S}} \to \boldsymbol{p} \in \mathbb{R}^d \tag{2}$$

- w fixed length triangular random walks (u_{πw(1)},..., u_{πw(n)})
 The triangular random walk samples triangular successors with probability β and non-triangular successors with probability
 - $1-\beta$.
- input to LSTM, use sum of hidden states = p

Neural encoding of anchor patches

For structure nodes, random walk strategy:

- internal: random walks over set $I \{u | u \in A_s\}$
- neighborhood: random walks over set N {v | v ∉ A_s} limited to neighborhood k hops

- ▶ border: random walks over set $\{u | u \in I, v \in N, uv \in E\}$
- multiple random walks but single p

Estimating similarity of anchor patches and subgraph components

- similarity between subcomponent of subgraph and anchor patch
- $\blacktriangleright \gamma_X : (S^C, A_S) \to [0, 1]$
- for the position channel, $\gamma_P = \frac{1}{d_{SP}(A_S, S_C) + 1}$

d_{SP} is the shortest path between connected components *S^C* and anchor path *A_S*

 for structure channel, use the normalized Dynamic Time Warping (DTW)¹

► d_{A_S}, d_{S_C}: ordered degree sequences for the subgraph component and anchor patch

Algorithm summary

Algorithm 1: SUBGRAPH NEURAL NETWORK.

Input: Graph G = (V, E); Node representations $\{\mathbf{x}_u | u \in V\}$; Subgraph S consisting of connected components $S^{(C)}$ for c = 1, ..., R; Channels N, S, and P corresponding to neighborhood, structure, and position; Subchannels I and B corresponding to internal and border subgraph topology; Anchor patch sampling function $\phi_X : (G, S) \to A_X$; Anchor patch encoder $\psi_X : A_X \to \mathbb{R}^d$; Trainable weight matrices $\mathbf{W}_{x,z}^{(l)}$ and $\mathbf{W}_{x,z}^{(l)}$ for each layer $l \in [1, L]$ and each channel x; Nonlinear activation function σ .

Output: Subgraph representation h_S for subgraph S

$$\begin{array}{ll} \mathbf{z}_c^0 = \sum_{u \in S^{(C)}} \mathbf{x}_u \\ \mathbf{h}_{X,c}^0 = \mathbf{z}_c^0 \text{ for channel } \mathbf{X} \in \{\mathsf{N},\mathsf{S},\mathsf{P}\} \end{array} \qquad \qquad // \text{ Channel-independent initialization} \\ \end{array}$$

æ // Aggregate components

Sub-GNN Figure

Computational Complexity and model extensions

- function of (number of subgraphs, size of the subgraphs)
- also depends on number of anchor patches: prespecified and fixed
- possible to use other types of similarity or joint learning of node embeddings

Synthetic Experiments

- subgraph properties: density, cut ratio, coreness, component
- density: internal structure(250 subgraphs of size 20)
- cut ratio: border structure(250 subgraphs of size 20)
- coreness: average core number of the subgraph, tests border structure and position (221 subgraphs of size 20)
- component: the number of subgraph components,(250 subgraphs with 15 nodes per component) tests internal and external position.

Real World Datasets

- PPI-BP : 1591 subgraphs with 6 labels, labeled using Biological Process Ontology from MSigDB, Subgraphs are collections of proteins in the PPI network that are involved in the same biological process
- HPO-METAB : graphs of causal genes and symptoms, with subgraphs defined by symptoms. 2400 subgraphs with 6 labels from metabolic disorders: lysosomal, energy, amino acid, carbohydrate, lipid, and glycosylation.
- HPO-NEURO : about neurological disorders
- EM-USER : subgraphs about work out routines with 1343 sugraphs. Label is gender

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

HPO dataset challenges

- distinguishing subcategories of similar diseases (a challenge for averaging-based methods),
- exhibit class distributional shift between train and test, and have been designed to require inductive inference to nearby phenotypes using edges in the graph.
- require distinguishing subcategories of similar diseases (a challenge for averaging-based methods),

Baselines

- AVG: average of the node embeddings of the subgraph
- MN-GIN and MN-GAT: use virtual node to represent a subgraph
- ► s2v-N, s2v-S, s2v-NS: suhgraph 2 Vec
- GC: treat each subgraph as standalone graph using average of node embeddings

pretrained: GIN on link prediction

Simulation microF1

. .

Method	DENSITY	CUT RATIO	CORENESS	COMPONENT
SUB-GNN (Ours)	$0.919{\scriptstyle\pm0.016}$	$0.629{\scriptstyle\pm0.039}$	0.659±0.092	0.958±0.098
Node Averaging	$0.429{\scriptstyle\pm0.041}$	$0.358{\scriptstyle\pm0.055}$	0.530 ± 0.050	$0.516 \pm < 0.001$
Meta Node (GIN)	$0.442{\scriptstyle\pm0.052}$	$0.423{\scriptstyle\pm0.057}$	0.611 ± 0.050	$0.784{\scriptstyle \pm 0.046}$
Meta Node (GAT)	$0.690{\scriptstyle\pm0.021}$	$0.284{\scriptstyle\pm0.052}$	0.519 ± 0.076	$0.935 \pm < 0.001$
Sub2Vec Neighborhood	$0.345{\scriptstyle\pm0.066}$	$0.339{\scriptstyle \pm 0.058}$	0.381 ± 0.047	0.568 ± 0.039
Sub2Vec Structure	$0.339{\scriptstyle\pm0.036}$	$0.345{\scriptstyle\pm0.121}$	0.404 ± 0.097	0.510 ± 0.013
Sub2Vec N & S Concat	$0.352 {\pm} 0.071$	$0.303{\scriptstyle\pm0.062}$	0.356 ± 0.050	$0.568{\scriptstyle\pm0.021}$
Graph-level GNN	$0.816{\scriptstyle \pm 0.068}$	$0.377{\scriptstyle \pm 0.058}$	0.419±0.070	$0.526{\scriptstyle \pm 0.081}$

Real World microF1

Method	PPI-BP	HPO-NEURO	HPO-METAB	EM-USER
SUB-GNN (Ours)	0.324±0.013	0.632±0.010	0.537±0.023	0.751±0.021
Node Averaging	$0.289{\scriptstyle \pm 0.043}$	0.490 ± 0.059	0.443 ± 0.063	0.744 ± 0.086
Meta Node (GIN)	0.277 ± 0.040	$0.233{\scriptstyle \pm 0.086}$	0.151 ± 0.073	0.550 ± 0.025
Meta Node (GAT)	$0.308{\scriptstyle\pm0.032}$	0.259 ± 0.063	$0.138{\scriptstyle \pm 0.034}$	0.536 ± 0.047
Sub2Vec Neighborhood	$0.309{\scriptstyle\pm0.023}$	0.211 ± 0.068	0.132 ± 0.047	0.503 ± 0.035
Sub2Vec Structure	$0.307{\scriptstyle\pm0.013}$	$0.223 {\pm} 0.065$	0.124 ± 0.025	0.742 ± 0.023
Sub2Vec N & S Concat	$0.295{\scriptstyle\pm0.011}$	0.206 ± 0.073	0.114 ± 0.021	0.536 ± 0.047
Graph-level GNN	0.291 ± 0.026	0.577 ± 0.015	0.480 ± 0.026	0.505 ± 0.04

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Channel Ablation Analysis

aligns with their inductive biases

SUB-GNN Channel	DENSITY	CUT RATIO	CORENESS	COMPONENT
Position (P)	0.758±0.046	0.516±0.083	0.581±0.044 🗸	0.958±0.098 🗸
Neighborhood (N)	0.777 ± 0.057	0.313±0.087	$0.485{\scriptstyle \pm 0.075}$	0.823 ± 0.089
Structure (S)	0.919±0.016 🗸	0.629±0.039 🗸	0.663±0.058 🗸	0.600±0.170
All (P+N+S)	0.894±0.025	0.458 ± 0.101	$0.659{\scriptstyle\pm0.092}$	0.726 ± 0.120