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Variational Auto-Encoder



Variational Auto-Encoder

Maximize ELBO:

Eq(z |x)log(p(x |z))� KL(q(z |x)||p(z)) (1)

I Term 1: Reconstruction
I Term 2: prior



Objective

Learning independent factors of generation in an unsupervised
manner

I In the above image, generated image depends on : color of
walls, size, shape, color of object



Disentangled representations

I If we change one latent factor in a disentangled representation,
it corresponds to changes in only one generative factor

I For example, in the above 3D image , change z corresponding
to wall colors, image remains same, and only background
changes.



Why disentangled representations

I generalize better to unseen situations: useful in zero-shot or
knowledge transfer

I boost AI performance: (Lake 2016)



��VAE

I generative model to learn a disentangled z in an unsupervised

manner
I no prior information regarding number of factors, or

correspondence



Method

I Given dataset D = {X ,V ,W }
I images x 2 R

N

I conditionally independent facotrs v 2 R
K

I conditionally dependent factors w 2 R
H

I these factors are independent log(p(v |x)) =
P

k
logp(vk |x)

I assumption: p(x |v ,w) = Sim(v ,w), where Sim is the true
simulator that generates images given v ,w



Goal

Learn a joint distribution of p(x, z) where z 2 R
M ,M � K , such

that

p(x |z) ⇠ p(x |v ,w) = Sim(v ,w) (2)

Maximize the marginal log likelihood of observed data x :

max✓Ep✓(z)[p✓(x |z)] (3)

Posterior of the inferred latent factors z :

q�(z |x) (4)

Goal is to ensure q�(z |x) corresponds to v in a disentagled manner.



��VAE

To achieve disentanglement or statistical Independence, set the
prior to be an isotropic Gaussian :

p(z) = N(0, I ) (5)

max✓,�Ex⇠DEq�(z |x)logp✓(x |z) (6)

s.t.DKL(q�(z |x)||p(z)) < ✏ (7)

Rewrite as Lagrangian under the KKT conditions:

max✓,�Ex⇠DEq�(z |x)logp✓(x |z)� �(DKL(q�(z |x)||p(z))� ✏) (8)

max✓,�Ex⇠DEq�(z |x)logp✓(x |z)� �(DKL(q�(z |x)||p(z))) (9)



Trade off

I Term 1 encourages better representations for Reconstruction
fidelity

I Term 2 or high beta values try to make the dimensions as
independent of each other as possible



Likelihood is a poor metric to measure disentanglement

I Disentangled representations emerge when the right balance is
found between reconstruction cost as regularisation and latent
channel capacity restriction (� > 1).

I � > 1 can lead to poorer reconstructions due to the loss of
high frequency details when passing through a constrained
latent bottleneck.

I need of a new metric to measure disentanglement



New Disentanglement Meitrc

I disentangled must be interpretable: can generate images of
small , green apples, and large, green apples by varying the
small latent

I independence can be obtained using PCA or ICA, but not
interpretable!

I cross correlation is not a good metric
I target is to measure both Independence and interpretability



Disentanglement Meitrc

I we have labels of the generative factors v 2 V for some
examples

I Choose an independent factor randomly y ⇠ Unif [1, . . . ,K ]
I For a batch of L samples

I sample two sets of latent representations v1,l and v2,l
enforcing [v1,l ]k = [v2,l ]k if k = y the value of the factor is
fixed

I Get x1,l ⇠ Sim(v1,1) then infer z1,l = µ(x1,l) using encoder
q(z |x) ⇠ N(µ(x),�(x))

I similarly for the second batch v2,l
I zb

di↵
= |z1,l � z2,l | the linear difference between the two latent

I take average across the batch zb

di↵
=

1
L

P
L

l=1(z l

di↵
),and

p(y |zb

di↵
) , this score is disentanglement metric



Disentanglement Metric

I accuracy of this classifier over multiple batches is used as
disentanglement metric score.

I p(y |zb

di↵
) : linear classifier with low VC-dimension



Experiments



Experiments: Simulation Dataset

I 2D shapes
I Cartesian product of the shape and four independent

generative factors defined in vector graphics: position X (32
values), position Y (32 values), scale (6 values) and rotation
(40 values over the 2⇡ range.



Experiments



Experiments



Experiments



Conclusion

I reformulated the standard VAE framework as a constrained
optimisation problem with strong latent capacity constraint
and independence prior pressures.

I covers a wider range of factor values and is disentangled more
cleanly than other benchmarks, all in a completely
unsupervised manner



Ladder Variational Autoencoders

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae
Sønderby, Ole Winther



Motivation

I hierarchies of conditional stochastic variables
I structured inference model using the same top-down

dependency structure both in the inference and generative
models.



Ladder VAE

I VAEs and LVAEs simultaneously train a generative model
p✓(x , z) = p✓(x |z)p✓(z) for data x using latent variables z

I inference model q�(z |x)
I variational lower bound to the likelihood p✓(x) =

R
p✓(x , z)dz .



VAE: generative model

p✓(z) = p✓(zL)
L�1Y

i=1

p✓(z i |z i+1) (10)

p✓(z i |z i+1) = N
�
z i |µp,i (z i+1),�

2
p,i (z i+1)

�
, p✓(zL) = N (zL|0, I )

(11)

p✓(x |z1) = N
�
x |µp,0(z1),�

2
p,0(z1)

�
or P✓(x |z1) = B

�
x |µp,0(z1)

�

(12)

I p indicates generative model parameters, q indicates inference
model parameters

I observation models is matching either continuous-valued
(Gaussian N ) or binary-valued (Bernoulli B) data

I The hierarchical specification allows the lower layers of the
latent variables to be highly correlated



VAE inference model: bottom-up

q�(z |x) = q�(z1|x)
LY

i=2

q�(z i |z i�1) (13)

q�(z1|x) = N
�
z1|µq,1(x),�2

q,1(x)
�

(14)

q�(z i |z i�1) = N
�
z i |µq,i (z i�1),�

2
q,i (z i�1)

�
, i = 2 . . . L. (15)

d (y) =MLP(y) (16)
µ(y) =Linear(d (y)) (17)

�2(y) =Softplus(Linear(d (y))) , (18)



Ladder VAE

d n =MLP(d n�1) (19)
µ̂q,i =Linear(d i ), i = 1 . . . L (20)

�̂2
q,i =Softplus(Linear(d i )), i = 1 . . . L (21)

where d 0 = x . Recursive downward pass:

q�(z |x) =q�(zL|x)
L�1Y

i=1

q�(z i |z i+1) (22)

�q,i =
1

�̂�2
q,i + ��2

p,i

(23)

µq,i =
µ̂q,i �̂

�2
q,i + µp,i�

�2
p,i

�̂�2
q,i + ��2

p,i

(24)

q�(z i |·) = N
�
z i |µq,i ,�

2
q,i

�
, (25)

where µq,L = µ̂q,L and �2
q,L = �̂2

q,L.



Ladder VAE

I precision-weighted combination of
I µ̂q and �̂2

q
carrying bottom-up information and

I µp and �2
p

from the generative distribution carrying top-down
prior information.

I µ̂q and �̂2
q as the approximate gaussian likelihood that is

combined with a gaussian prior µp and �2
p from the generative

distribution.
I Together these form the approximate posterior distribution

q✓(z |z , x) using the same top-down dependency structure
both in the inference and generative model.



Warm up from deterministic to VAE

I The variational regularization term causes some of the latent
units to become inactive during training

I the approximate posterior for unit k , q(zi ,k | . . . ) is regularized
towards its own prior p(zi ,k | . . . ), a phenomenon also
recognized in the VAE setting

I presumably trapped in a local minima or saddle point at
KL(qi ,k |pi ,k) ⇡ 0, with the optimization algorithm unable to
re-activate them.



Warm up from deterministic to VAE

initializing training using the reconstruction error only
(corresponding to training a standard deterministic auto-encoder),
and then gradually introducing the variational regularization term:

L(✓,�; x)T = ��KL(q�(z |x)||p✓(z))+Eq�(z|x) [log p✓(x |z)] , (26)

where � is increased linearly from 0 to 1 during the first Nt epochs
of training.



Experiments

I Datasets: MNIST, Omniglot, NORB
I L = 5 with sizes 64, 32, 16, 8, 4
I MNIST: bernoulli with sigmoid output layer



MNIST



Experiments: MNIST

Figure 3: MNIST log-likelihood values for VAEs and the LVAE model
with different number of latent layers



Experiments: MNIST

log KL(q|p) for each latent unit is shown at different training epochs.
Low KL (white) corresponds to an inactive unit.



Experiments: MNIST



Experiments: MNIST



Experiments: MNIST



Experiments: MNIST

PCA plots of samples from q(zi |zi�1) for 5-layer VAE and LVAE models
trained on MNIST



Conclusion

I new inference model for VAEs combining a bottom-up
data-dependent approximate likelihood term with a prior
information from the generative distribution

I learns a deeper and qualitatively different latent representation
of data

I this parameterization makes the optimization easier since the
inference is simply correcting the generative distribution
instead of fitting the two models separately.



CausalVAE: Disentangled Representation Learning

via Neural Structural Causal Models

Mengyue Yang, Furui Liu, Zhitang Chen, Xinwei Shen, Jianye
Hao, Jun Wang



Motivation

I learning disentangled representations
I assumption: the data is indeed generated by countable

independent factors
I this paper: the independent factors are causally related

pendulum angle and light position are the causes of (l , x) of shadow



Advantages of causal disentanglement

I above are not independent, indepndence based
disentanglement cant extract these factors

I will still disentangle light and pnedulum?
I generating counterfactual data– do operation
I example: do(shadow = 0)



Structural Causal model

I a causal model is an ordered triple h✏,X ,F i ,
I where ✏ : exogenous variables whose values are determined by

factors outside the model;
I X : set of endogenous variables whose values are determined

by factors within the model;
I F : structural equations that express the value of each

endogenous variable as a function of the values of the other
variables in X and ✏

I xi = fi (xpai , ✏i )



Causal VAE

I Encoder x ! z
I SCM Layer
I Decoder z ! x



Causal VAE: Structural Causal Model

I Step 1: identify the exogeneous factors ✏

I step 2: A ‘Causal Structure Layer’ that relates the exogeneous
factors

I *the causal structure is learnt, not prespecified*



Method: Causal VAE: Structural Causal Model Layer

I Consider a Linear Structural Causal Model
I disentangled factors correspond to u
I and the causal graph among them corresponds to A
I z = AT z + ✏ = (I � AT )�1✏

I z 2 Rn corresponding to n concepts
I ✏ = N(0, I )
I For example, chain graph z1 ! z2 ! z3

I
2
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Causal VAE: Step 1: z latent representations

I
z = AT z + ✏ = (I � AT )�1✏ (27)

✏ ⇠ N (0, I ), (28)

I ?? Only Markov Equivalence Graph if the variables are
continuous, and the equations are linear with Gaussian
(normal, or bell-shaped) errors.



Causal VAE: Step 2: Structural Causal Model Layer

I z i = gi (Ai � zi ; ⌘i ) + ✏i
I Mask layer that mimics generating children from parents



Causal VAE

Figure



Generative Model

I x 2 Rd , known concepts u 2 R
n, ✏ 2 R

n

I z = (I � AT )�1✏ = C✏

I Conventional VAE: p✓(x , z) = p✓(x |z)p(z)
I Conditional VAE: p✓(x , z |u) = p✓(x |z ,u)p(z |u)
I Causal VAE: p✓(x , z , ✏|u) = p✓(x |✏, z ,u)p(z , ✏|u)



Generative Model

I Decoder: f(z)
I Encoder: h(x, u)

p✓(x|z, ✏, u) = p✓(x|z) ⌘ p⇠(x � f(z)) (29)

q�(z, ✏|x, u) ⌘ q(z|✏)q⇣(✏� h(x, u)), (30)

x = f(z) + ⇠, ✏ = h(x, u) + ⇣, (31)

I ⇠ and ⇣ are the vectors of independent noise with probability
densities p⇠ and q⇣ .

I When ⇠ and ⇣ are infinitesimal, the encoder and decoder can
be regarded as deterministic ones.



Generative Model

I
I the joint prior p✓(✏, z|u) for latent variables z and ✏ as

p✓(✏, z|u) = p✏(✏)p✓(z|u), (32)

I p✏(✏) = N (0, I)
I the prior of latent endogenous variables p✓(z|u) is a factorized

Gaussian distribution conditioning on the additional
observation u, i.e.

p✓(z|u) = N (�1(ui ),�
2
2(ui )), (33)

I �1 and �2 are an arbitrary functions. let �1(u) = u and
�2(u) ⌘ 1.



Training the Generative Model

EqX [log p✓(x|u)] � ELBO = EqX [E✏,z⇠q� [log p✓(x|z, ✏, u)]�D(q�(✏, z|x, u)||p✓(✏, z|u))],
(34)

q�(✏, z|x, u) = q�(✏|x, u)�(z = C✏) = q�(z|x, u)�(✏ = C�1z), (35)

ELBO = EqX [Eq�(z|x,u)[log p✓(x|z)]� (36)

D(q�(✏|x, u)||p✏(✏))�D(q�(z|x, u)||p✓(z|u))]. (37)



Additional Constraints

lu = EqX ku � �(ATu)k2
2  1, (38)

lm = Ez⇠q�

nX

i=1

kzi � gi (Ai � z;⌘i )k2  2, (39)

DAG constraint:

H(A) ⌘ tr((I + A � A)n)� n = 0. (40)

Training Loss Function:

L = �ELBO + ↵H(A) + �lu + �lm, (41)



Experiments

I Two datasets: Synthetic (Pendulum) and CelebA
I Pendulum:

I 3 entities (pendulum, light, shadow)
I 4 concepts ((pendulum angle, light angle) ! (shadow

location, shadow length)).
I CelebA

I 4 causally related concepts (gender, smile, eyes open,mouth
open), where gender and smile cause eyes open, and smile
causes mouth open.

I Evauation Criteria:
I MIC: Maximal Information Criterion (MIC)
I Total Information Criterion (TIC)



Results



Intervention Experiments



Intervention Experiments



Conclusion

I learning disentangled representations of causally related
concepts in data

I allows intervention to generate counterfactual outputs as
expected according to our understanding of the causal system.


