A Flexible Generative Framework for Graph-based Semi-supervised Learning

Jiaqi Ma, Weijing Tang, Ji Zhu, Qiaozhu Mei

Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read

Motivation

- tasks where the relational information is stored in a graph structure with the data samples as nodes
- two types of graph-based semi-supervised learning.
 - graph-based regularization methods : smooth predictions/features of connected nodes
 - graph neural networks: aggregated into a hidden representation

This Paper: modeling the joint distribution of the data, graph, and labels with generative models has Why model graph using a generative model?

- succinct underlying structures of the graph data
- an observed graph is often noisy
- more general relationship among features, outcomes, and the graph

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Related Work in detail: Graph based Regularization

$$\sum_{i} \ell_i + \sum_{i,j} w_{i,j} R(f_i, f_j) \tag{1}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Here, R a regularization function of features or labels. Most commonly, it is set as a graph Laplacian regularizer

Method:Generation Process

the setup is regular semi supervised deep learning

$$\blacktriangleright \mathbf{Y} = [\mathbf{Y}_{obs}, \mathbf{Y}_{m} iss]$$

- infer \mathbf{Y}_m iss based on $(X, \mathbf{Y}_o bs, G)$.
- assume the graph is generated based on the node features and outcomes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• This paper:
$$p(X, Y, G) = p(G|X, Y)p(Y|X)p(X)$$

Method:Inference

- To infer labels of nodes: $p_{\theta}(Y_{miss}|X, Y_{obs}, G)$
- But this is intractable
- Approximate by true posterior $q_{\phi}(Y_{miss}|X, Y_{obs}, G)$
- ► ELBO:

 $logp(Y_{obs}, G|X) E_{q_{\phi}(Y_{miss}|X, Y_{obs}, G)}(logp_{\theta}(Y_{miss}, Y_{obs}, G|X) logq(Y_{miss}|X, Y_{obs}, G|X) e_{\phi}(Y_{miss}|X, Y_{obs}, G|X) e_{\phi}(Y$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- defined as $L_{ELBO}(\theta, \phi; X, Y_{obs}, G)$
- $\blacktriangleright \hat{\theta}, \hat{\phi} = \operatorname{argmin}_{\theta}, \hat{\phi} L_{ELBO}(\theta, \phi; X, Y_{obs}, G)$

Instantiations of the Generative Model

- ▶ $p_{\theta}(Y|X)$ in the generative model: multi-layer perceptron
- ▶ $p_{\theta}(G|X, Y)$ latent space model and stochastic block models

Further assume independence of edges: $p_{\theta}(G|X, Y) = \pi p_{\theta_{i,j}}(e_{i,j}|X, Y).$

Instantiation of LSM

- nodes lie in a latent space and the probability of ei,j only depends the representation of nodes i and j
- logistic regression model

$$p_{\theta}(e_{i,j} = 1 | x_i, y_i, x_j, y_j) = \sigma([(Ux_i)^T, y_i^T, (Ux_j)^T, y_j^T]w) \quad (2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Instatiation with SBM

SBM : C types of nodes and each node i has a (latent) type variable z_i, here same as node label

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

•
$$e_{i,j}|y_i, y_j = Ber(p_0)$$
 if $y_i = y_j$

•
$$e_{i,j}|y_i, y_j = Ber(p_1)$$
 if $y_i \neq y_j$

Instantiations of the Approximate Posterior Model

Training the model

- additional supervised loss to better train the approximate posterior model (similar to conditional VAE)
- Negative Sampling: only calculate the probabilities of the edges observed in the graph and a set of "negative edges" randomly sampled from the (i, j) pairs where edges do not exist.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Results: Benchmark

	Cora	Pubmed	Citeseer
MLP	0.583 ± 0.009	0.734 ± 0.002	0.569 ± 0.008
GCN	0.815 ± 0.002	0.794 ± 0.004	0.718 ± 0.003
GAT	0.825 ± 0.005	0.785 ± 0.004	0.715 ± 0.007
LSM_GCN	$0.825 \pm 0.002*$	0.779 ± 0.004	$0.744 \pm 0.003*$
LSM_GAT	$\mathbf{\underline{0.829}} \pm 0.003$	0.776 ± 0.007	$0.731 \pm 0.005*$
SBM_GCN	$0.822 \pm 0.002*$	0.784 ± 0.006	0.745 ± 0.004*
SBM_GAT	$\underline{0.829} \pm 0.003$	0.774 ± 0.004	$0.740 \pm 0.003*$

The upper block lists the discriminative baselines. The lower block lists the proposed variants of $\ensuremath{\mathsf{G3NN}}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Missing Edge Settings

Table 3: Classification accuracy under the missing-edge setting. The **bold** marker, the <u>underline</u> marker, the asterisk (*) marker, and the (\pm) error bar share the same definitions in Table 2.

	Cora	Pubmed	Citeseer
MLP	0.583 ± 0.009	0.734 ± 0.002	0.569 ± 0.008
GCN	0.665 ± 0.007	0.746 ± 0.004	0.652 ± 0.005
GAT	0.682 ± 0.004	0.744 ± 0.006	0.642 ± 0.004
LSM_GCN	$0.711 \pm 0.005*$	0.766 ± 0.006*	$0.704 \pm 0.002*$
LSM_GAT	$0.710 \pm 0.007*$	$0.766 \pm 0.004*$	$0.691 \pm 0.005*$
SBM_GCN	$0.718 \pm 0.004*$	$0.762 \pm 0.005*$	$0.716 \pm 0.004*$
SBM_GAT	$\underline{0.716} \pm 0.007 *$	$\underline{0.761} \pm 0.005*$	$\underline{0.709} \pm 0.008 *$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Reduced Label Settings

drop half of the training labels for each class compared to the standard benchmark setting

	Cora	Pubmed	Citeseer
MLP	0.498 ± 0.004	0.674 ± 0.005	0.493 ± 0.010
GCN	0.750 ± 0.003	$\textbf{0.724} \pm 0.005$	0.666 ± 0.003
GAT	0.771 ± 0.004	0.711 ± 0.006	0.675 ± 0.005
LSM_GCN	$0.777 \pm 0.002*$	0.709 ± 0.003	$0.691 \pm 0.005*$
LSM_GAT	$0.792 \pm 0.004*$	0.699 ± 0.003	$0.691 \pm 0.004*$
SBM_GCN	$\overline{0.780} \pm 0.002*$	0.710 ± 0.004	$\overline{0.703} \pm 0.006*$
SBM_GAT	$\overline{\textbf{0.796}} \pm 0.008*$	0.699 ± 0.003	$0.698 \pm 0.003*$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ