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Introduction

» LSTM interpretation model

P extracts information about not only which words contributed
to an LSTM's prediction

> also how they were combined in order to yield the final
prediction

» mathematically decomposing the LSTM's output, able to
disambiguate the contributions made at each step by different
parts of the sentence.



Method: LSTM Decomposition
LSTM equations:

or = o(Woxt + Vohe—1 + bo)

fr = o(Wexe + Viehe—1 + by)

ir = o(Wix¢ + Vih—1 + b))

gr = tanh(Wgxy + Vghi—1 + bg)
G=fOc1+irOgt

h: = ot ® tanh(c;)
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After processing the full sequence, the final state ht used as input
to a linear layer +SoftMax ( multinomial logistic regression), to
return a probability distribution p over C classes, with

exp(W;hr)

dalaa e S, exp(Wihy)
k=1 t




Contextual Decomposition

Given an arbitrary phrase xq,...,x,, where 1 < g <r < T,
decompose each output h; and cell state ¢;

hy = Bt + 1t (8)

¢t =B+ (9)
B¢ corresponds to contributions made solely by the given phrase to
ht, and that ~; corresponds to contributions involving, at least in

part, elements outside of the phrase. Similarly, 3f and ~¢. final
output state Whr :

p= SoftMax( WgBr + W’yT) (10)



Contextual Decomposition

ir = o(Wix¢ + Vihe—1 + bj) (11)
= Lo(Wixt) + Lo(Vihe-1) + Ls(bi) (12)

ﬂ.“ ® Ct—1 :(LU(Wth) + La(vfﬁt—l) + LJ(Vf’Yt—l) + La(bf)) ® (51(571 +
(13)

=([Lo(Wrxt) + Lo(VEBi—1) + Lo(bf)] © Br_1) (14)
+ (Lo(VFve-1) © Bi 1 + f: O v¢1)
=Bf +1{ (15)



Contextual Decomposition

it © gt =[Lo(Wixt) + Lo(ViBt-1) + Lo(Vive-1) + Lo(bi)] (16)
® [Ltanh(Wext) + Ltanh (Vg Bt—1) + Ltanh(Vgye—1) + Liann(bg)]
=[Lo(Wixt) © [Ltanh(Wgxt) + Lianh(VgBe-1) + Ltanh(bg()] )
17
+ Lo(ViBe-1) © [Leanh (Wgx¢) + Lianh (Vg Be—1) + Leanh(bg)]
+ Lo (bi) © [Leanh(Wgxt) 4 Leanh (Vg Be-1)]]
+ [Lo(Vive-1) © gt + it © Leanh(Vgye-1) — Lo(Vive—1) © Leanh(
+ Ly(bi) © Liann(bg)]
=8¢ +¢ (18)



Cotextual Decomposition

Bs = Bt + ¢
ve =L+

hs = o © tanh(c¢)
= 0t O [Leanh(Bf) + Ltanh (75)]
= 0t © Lanh(B5) + 0t © Leann(75)
= Bt + 7t



Linearization of Activation functions

g = tanh(Wgxy + Vghe_1 + bg)
Required:

8t = Ltanh(WgXt) + Ltanh(vghtfl) + Ltanh(bg)

tanh(z y,-) = (Z Ltanh()/i))



Linearization of Activation functions

summarization of partial sums as a linearization technique if
Y1,...,Yn are ordered

k—1
L, .»(vk) = tanh( ny tanh(z ) (28)
j=1

But no ordering, compute an average over all orderings

w1 (K) ™ (k)1
Lann(y) Z[tanh Z Yri(j )) — tanh( Z ym(j))]
= j=1

(29)

This linearization technique is an approximation to the Shapley
Values.(7?)



Experiments: Stanford Sentiment Tree Bank

» Unigram Word Scores: Correlation with the logistic regression
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Table 2: Heat maps for portion of review from SST with different attribution techniques. Only CD
captures that the first phrase is positive.
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|dentifying Dissenting Subphrases

» "used to be my favorite”

> favorite is positive, used to be is negative

Attribution Method Heat Map

Gradient used to not time
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Table 1: Heat maps for portion of yelp review with different attribution techniques. Only CD
captures that favorite” is positive.
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Contextual Decomposition Captures Negation
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Figure 1: Distribution of scores for positive and negative negation coefficients relative to all interac-
tion coefficients. Only leave one out and CD are capable of producing these interaction scores.



|dentifying Similar Phrases

» Compare Dense embeddings St average for phrases across the
training set and validation set

» Get nearest neghbors

not entertain- not bad very funny entertaining bad

ing

not funny never dull well-put- intelligent dull
together piece

not engaging n’t drag entertaining engaging drag
romp

never satisfac- never fails very good satisfying awful

tory

not well without sham surprisingly admirable tired
sweet

not fit without missing  very well- funny dreary
written

Table 3: Nearest neighbours for selected unigrams and interactions using CD embeddings



