## Beyond Word Importance: Contextual Decomposition to Extract Interactions from LSTMs

Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read

W. James Murdoch, Peter J. Liu, Bin Yu

July 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### Introduction

- LSTM interpretation model
- extracts information about not only which words contributed to an LSTM's prediction
- also how they were combined in order to yield the final prediction
- mathematically decomposing the LSTM's output, able to disambiguate the contributions made at each step by different parts of the sentence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### Method: LSTM Decomposition

LSTM equations:

$$o_t = \sigma(W_o x_t + V_o h_{t-1} + b_o) \tag{1}$$

$$f_t = \sigma(W_f x_t + V_f h_{t-1} + b_f)$$
(2)

$$i_t = \sigma(W_i x_t + V_i h_{t-1} + b_i)$$
(3)

$$g_t = \tanh(W_g x_t + V_g h_{t-1} + b_g) \tag{4}$$

$$c_t = f_t \odot c_{t-1} + i_t \odot g_t \tag{5}$$

$$h_t = o_t \odot \tanh(c_t) \tag{6}$$

After processing the full sequence, the final state  $h_T$  used as input to a linear layer +SoftMax (multinomial logistic regression), to return a probability distribution p over C classes, with

$$p_j = \text{SoftMax}(Wh_T)_j = \frac{\exp(W_j h_T)}{\sum_{k=1}^C \exp(W_k h_t)}$$
(7)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

#### Contextual Decomposition

Given an arbitrary phrase  $x_q, ..., x_r$ , where  $1 \le q \le r \le T$ , decompose each output  $h_t$  and cell state  $c_t$ 

$$h_t = \beta_t + \gamma_t \tag{8}$$

$$c_t = \beta_t^c + \gamma_t^c \tag{9}$$

 $\beta_t$  corresponds to contributions made solely by the given phrase to  $h_t$ , and that  $\gamma_t$  corresponds to contributions involving, at least in part, elements outside of the phrase. Similarly,  $\beta_t^c$  and  $\gamma_t^c$ . final output state  $Wh_T$ :

$$p = \mathsf{SoftMax}(W\beta_T + W\gamma_T) \tag{10}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

#### Contextual Decomposition

$$i_{t} = \sigma(W_{i}x_{t} + V_{i}h_{t-1} + b_{i})$$
(11)  
=  $L_{\sigma}(W_{i}x_{t}) + L_{\sigma}(V_{i}h_{t-1}) + L_{\sigma}(b_{i})$ (12)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$f_{t} \odot c_{t-1} = (L_{\sigma}(W_{f}x_{t}) + L_{\sigma}(V_{f}\beta_{t-1}) + L_{\sigma}(V_{f}\gamma_{t-1}) + L_{\sigma}(b_{f})) \odot (\beta_{t-1}^{c} + (13))$$

$$= ([L_{\sigma}(W_{f}x_{t}) + L_{\sigma}(V_{f}\beta_{t-1}) + L_{\sigma}(b_{f})] \odot \beta_{t-1}^{c}) \qquad (14)$$

$$+ (L_{\sigma}(V_{f}\gamma_{t-1}) \odot \beta_{t-1}^{c} + f_{t} \odot \gamma_{t-1}^{c})$$

$$= \beta_{t}^{f} + \gamma_{t}^{f} \qquad (15)$$

#### Contextual Decomposition

$$i_{t} \odot g_{t} = [L_{\sigma}(W_{i}x_{t}) + L_{\sigma}(V_{i}\beta_{t-1}) + L_{\sigma}(V_{i}\gamma_{t-1}) + L_{\sigma}(b_{i})]$$
(16)  

$$\odot [L_{tanh}(W_{g}x_{t}) + L_{tanh}(V_{g}\beta_{t-1}) + L_{tanh}(V_{g}\gamma_{t-1}) + L_{tanh}(b_{g})]$$
(17)  

$$= [L_{\sigma}(W_{i}x_{t}) \odot [L_{tanh}(W_{g}x_{t}) + L_{tanh}(V_{g}\beta_{t-1}) + L_{tanh}(b_{g})]$$
(17)  

$$+ L_{\sigma}(V_{i}\beta_{t-1}) \odot [L_{tanh}(W_{g}x_{t}) + L_{tanh}(V_{g}\beta_{t-1}) + L_{tanh}(b_{g})]$$
(17)  

$$+ L_{\sigma}(b_{i}) \odot [L_{tanh}(W_{g}x_{t}) + L_{tanh}(V_{g}\beta_{t-1}) + L_{tanh}(b_{g})]$$
(17)  

$$+ [L_{\sigma}(V_{i}\gamma_{t-1}) \odot g_{t} + i_{t} \odot L_{tanh}(V_{g}\gamma_{t-1}) - L_{\sigma}(V_{i}\gamma_{t-1}) \odot L_{tanh}(t)$$
(18)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Cotextual Decomposition

$$\beta_t^c = \beta_t^f + \beta_t^u \tag{19}$$

$$\gamma_t^c = \gamma_t^f + \gamma_t^u \tag{20}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$h_t = o_t \odot \tanh(c_t) \tag{21}$$

$$= o_t \odot \left[ \mathcal{L}_{tanh}(\beta_t^c) + \mathcal{L}_{tanh}(\gamma_t^c) \right]$$
(22)

$$= o_t \odot L_{tanh}(\beta_t^c) + o_t \odot L_{tanh}(\gamma_t^c)$$
(23)

$$=\beta_t + \gamma_t \tag{24}$$

### Linearization of Activation functions

$$g_t = tanh(W_g x_t + V_g h_{t-1} + b_g)$$
(25)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Required:

$$g_t = L_{tanh}(W_g x_t) + L_{tanh}(V_g h_{t-1}) + L_{tanh}(b_g)$$
(26)  
$$tanh(\sum y_i) = (\sum L_{tanh}(y_i))$$
(27)

#### Linearization of Activation functions

summarization of partial sums as a linearization technique if  $y_1, \ldots, y_n$  are ordered

$$L'_{tanh}(y_k) = tanh(\sum_{j=1}^{k} y_j) - tanh(\sum_{j=1}^{k-1} y_j)$$
(28)

But no ordering, compute an average over all orderings

$$L_{tanh}(y_k) = \frac{1}{M_N} \sum_{i=1}^{M_N} [\tanh(\sum_{j=1}^{\pi_i^{-1}(k)} y_{\pi_i(j)}) - \tanh(\sum_{j=1}^{\pi_i^{-1}(k)-1} y_{\pi_i(j)})]$$
(29)

This linearization technique is an approximation to the Shapley Values.(?)

## Experiments: Stanford Sentiment Tree Bank

 Unigram Word Scores: Correlation with the logistic regression coefficient

| Attribution Method          | Heat Map                                                        |  |  |  |  |  |
|-----------------------------|-----------------------------------------------------------------|--|--|--|--|--|
| Gradient                    | It's easy to love Robin Tunney – she's pretty and she can act – |  |  |  |  |  |
|                             | but it gets harder and harder to understand her choices.        |  |  |  |  |  |
| Leave one out (Li et al.,   | It's easy to love Robin Tunney – she's pretty and she can act – |  |  |  |  |  |
| 2016)                       | but it gets harder and harder to understand her choices.        |  |  |  |  |  |
| Cell decomposition          | It's easy to love Robin Tunney – she's pretty and she can act – |  |  |  |  |  |
| (Murdoch & Szlam, 2017)     | but it gets harder and harder to understand her choices.        |  |  |  |  |  |
| Integrated gradients        | It's easy to love Robin Tunney – she's pretty and she can act – |  |  |  |  |  |
| (Sundararajan et al., 2017) | but it gets harder and harder to understand her choices.        |  |  |  |  |  |
| Contextual decomposi-       | It's easy to love Robin Tunney - she's pretty and she can act - |  |  |  |  |  |
| uon                         | but it gets harder and harder to understand her choices.        |  |  |  |  |  |

LegendVery NegativeNegativeNeutralPositiveVery Positive

Table 2: Heat maps for portion of review from SST with different attribution techniques. Only CD captures that the first phrase is positive.

cdpositive

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

# Identifying Dissenting Subphrases

- "used to be my favorite"
- favorite is positive, used to be is negative

| Attribution Method                                    | Heat Map |      |    |    |          |     |       |     |      |
|-------------------------------------------------------|----------|------|----|----|----------|-----|-------|-----|------|
| Gradient                                              | use      | i to | be | my | favorite | not | worth | the | time |
| Leave One Out (Li et al.,<br>2016)                    | used     | i to | be | my | favorite | not | worth | the | time |
| Cell decomposition (Mur-<br>doch & Szlam, 2017)       | used     | l to | be | my | favorite | not | worth | the | time |
| Integrated gradients (Sun-<br>dararajan et al., 2017) | used     | i to | be | my | favorite | not | worth | the | time |
| Contextual decomposition                              | used     | i to | be | my | favorite | not | worth | the | time |

Table 1: Heat maps for portion of yelp review with different attribution techniques. Only CD captures that "favorite" is positive.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

### Contextual Decomposition Captures Negation



Figure 1: Distribution of scores for positive and negative negation coefficients relative to all interaction coefficients. Only leave one out and CD are capable of producing these interaction scores.

・ロト ・ 同ト ・ ヨト ・ ヨト

э

### Identifying Similar Phrases

- Compare Dense embeddings β<sub>T</sub> average for phrases across the training set and validation set
- Get nearest neghbors

| not entertain-<br>ing   | not bad         | very funny                  | entertaining | bad    |
|-------------------------|-----------------|-----------------------------|--------------|--------|
| not funny               | never dull      | well-put-<br>together piece | intelligent  | dull   |
| not engaging            | n't drag        | entertaining<br>romp        | engaging     | drag   |
| never satisfac-<br>tory | never fails     | very good                   | satisfying   | awful  |
| not well                | without sham    | surprisingly<br>sweet       | admirable    | tired  |
| not fit                 | without missing | very well-<br>written       | funny        | dreary |

Table 3: Nearest neighbours for selected unigrams and interactions using CD embeddings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ