Beyond Word Importance: Contextual
 Decomposition to Extract Interactions from LSTMs
 Presenter: Arshdeep Sekhon
 https://qdata.github.io/deep2Read

W. James Murdoch, Peter J. Liu, Bin Yu

July 2019

Introduction

- LSTM interpretation model
- extracts information about not only which words contributed to an LSTM's prediction
- also how they were combined in order to yield the final prediction
- mathematically decomposing the LSTM's output, able to disambiguate the contributions made at each step by different parts of the sentence.

Method: LSTM Decomposition

LSTM equations:

$$
\begin{align*}
o_{t} & =\sigma\left(W_{o} x_{t}+V_{o} h_{t-1}+b_{o}\right) \tag{1}\\
f_{t} & =\sigma\left(W_{f} x_{t}+V_{f} h_{t-1}+b_{f}\right) \tag{2}\\
i_{t} & =\sigma\left(W_{i} x_{t}+V_{i} h_{t-1}+b_{i}\right) \tag{3}\\
g_{t} & =\tanh \left(W_{g} x_{t}+V_{g} h_{t-1}+b_{g}\right) \tag{4}\\
c_{t} & =f_{t} \odot c_{t-1}+i_{t} \odot g_{t} \tag{5}\\
h_{t} & =o_{t} \odot \tanh \left(c_{t}\right) \tag{6}
\end{align*}
$$

After processing the full sequence, the final state h_{T} used as input to a linear layer + SoftMax (multinomial logistic regression), to return a probability distribution p over C classes, with

$$
\begin{equation*}
p_{j}=\operatorname{SoftMax}\left(W h_{T}\right)_{j}=\frac{\exp \left(W_{j} h_{T}\right)}{\sum_{k=1}^{C} \exp \left(W_{k} h_{t}\right)} \tag{7}
\end{equation*}
$$

Contextual Decomposition

Given an arbitrary phrase x_{q}, \ldots, x_{r}, where $1 \leq q \leq r \leq T$, decompose each output h_{t} and cell state c_{t}

$$
\begin{align*}
& h_{t}=\beta_{t}+\gamma_{t} \tag{8}\\
& c_{t}=\beta_{t}^{c}+\gamma_{t}^{c} \tag{9}
\end{align*}
$$

β_{t} corresponds to contributions made solely by the given phrase to h_{t}, and that γ_{t} corresponds to contributions involving, at least in part, elements outside of the phrase. Similarly, β_{t}^{c} and γ_{t}^{c}. final output state $W h_{T}$:

$$
\begin{equation*}
p=\operatorname{SoftMax}\left(W \beta_{T}+W \gamma_{T}\right) \tag{10}
\end{equation*}
$$

Contextual Decomposition

$$
\begin{gather*}
i_{t}=\sigma\left(W_{i} x_{t}+V_{i} h_{t-1}+b_{i}\right) \tag{11}\\
=L_{\sigma}\left(W_{i} x_{t}\right)+L_{\sigma}\left(V_{i} h_{t-1}\right)+L_{\sigma}\left(b_{i}\right) \tag{12}\\
f_{t} \odot c_{t-1}= \tag{13}\\
=\left(L_{\sigma}\left(W_{f} x_{t}\right)+L_{\sigma}\left(V_{f} \beta_{t-1}\right)+L_{\sigma}\left(V_{f} \gamma_{t-1}\right)+L_{\sigma}\left(b_{f}\right)\right) \odot\left(\beta_{t-1}^{c}+\right. \tag{14}\\
= \\
\left.=\left(L_{\sigma}\left(W_{f} x_{t}\right)+L_{\sigma}\left(V_{f} \beta_{t-1}\right)+L_{\sigma}\left(b_{f}\right)\right] \odot \beta_{t-1}^{c}\right) \tag{15}\\
\\
=\left(L_{\sigma}\left(V_{f} \gamma_{t-1}\right) \odot \beta_{t-1}^{c}+f_{t} \odot \gamma_{t-1}^{c}\right)
\end{gather*}
$$

Contextual Decomposition

$$
\begin{align*}
i_{t} \odot g_{t}= & {\left[L_{\sigma}\left(W_{i} x_{t}\right)+L_{\sigma}\left(V_{i} \beta_{t-1}\right)+L_{\sigma}\left(V_{i} \gamma_{t-1}\right)+L_{\sigma}\left(b_{i}\right)\right] } \tag{16}\\
& \odot\left[L_{\tanh }\left(W_{g} x_{t}\right)+L_{\tanh }\left(V_{g} \beta_{t-1}\right)+L_{\tanh }\left(V_{g} \gamma_{t-1}\right)+L_{\tanh }\left(b_{g}\right)\right] \\
= & {\left[L_{\sigma}\left(W_{i} x_{t}\right) \odot\left[L_{\tanh }\left(W_{g} x_{t}\right)+L_{\tanh }\left(V_{g} \beta_{t-1}\right)+L_{\tanh }\left(b_{g}\right)\right]\right.} \\
& +L_{\sigma}\left(V_{i} \beta_{t-1}\right) \odot\left[L_{\tanh }\left(W_{g} x_{t}\right)+L_{\tanh }\left(V_{g} \beta_{t-1}\right)+L_{\tanh }\left(b_{g}\right)\right] \tag{17}\\
& \left.+L_{\sigma}\left(b_{i}\right) \odot\left[L_{\tanh }\left(W_{g} x_{t}\right)+L_{\mathrm{tanh}}\left(V_{g} \beta_{t-1}\right)\right]\right] \\
& +\left[L_{\sigma}\left(V_{i} \gamma_{t-1}\right) \odot g_{t}+i_{t} \odot L_{\tanh }\left(V_{g} \gamma_{t-1}\right)-L_{\sigma}\left(V_{i} \gamma_{t-1}\right) \odot L_{\tanh }(\right. \\
& \left.+L_{\sigma}\left(b_{i}\right) \odot L_{\tanh }\left(b_{g}\right)\right] \\
= & \beta_{t}^{u}+\gamma_{t}^{u}
\end{align*}
$$

Cotextual Decomposition

$$
\begin{align*}
& \beta_{t}^{c}=\beta_{t}^{f}+\beta_{t}^{u} \tag{19}\\
& \gamma_{t}^{c}=\gamma_{t}^{f}+\gamma_{t}^{u} \tag{20}
\end{align*}
$$

$$
\begin{align*}
h_{t} & =o_{t} \odot \tanh \left(c_{t}\right) \tag{21}\\
& =o_{t} \odot\left[L_{\tanh }\left(\beta_{t}^{c}\right)+L_{\tanh }\left(\gamma_{t}^{c}\right)\right] \tag{22}\\
& =o_{t} \odot L_{\tanh }\left(\beta_{t}^{c}\right)+o_{t} \odot L_{\tanh }\left(\gamma_{t}^{c}\right) \tag{23}\\
& =\beta_{t}+\gamma_{t} \tag{24}
\end{align*}
$$

Linearization of Activation functions

$$
\begin{equation*}
g_{t}=\tanh \left(W_{g} x_{t}+V_{g} h_{t-1}+b_{g}\right) \tag{25}
\end{equation*}
$$

Required:

$$
\begin{gather*}
g_{t}=L_{\tanh }\left(W_{g} x_{t}\right)+L_{\tanh }\left(V_{g} h_{t-1}\right)+L_{\tanh }\left(b_{g}\right) \tag{26}\\
\tanh \left(\sum y_{i}\right)=\left(\sum L_{\tanh }\left(y_{i}\right)\right) \tag{27}
\end{gather*}
$$

Linearization of Activation functions

summarization of partial sums as a linearization technique if y_{1}, \ldots, y_{n} are ordered

$$
\begin{equation*}
L_{\tanh }^{\prime}\left(y_{k}\right)=\tanh \left(\sum_{j=1} y_{j}\right)-\tanh \left(\sum_{j=1}^{k-1} y_{j}\right) \tag{28}
\end{equation*}
$$

But no ordering, compute an average over all orderings

$$
\begin{equation*}
L_{\tanh }\left(y_{k}\right)=\frac{1}{M_{N}} \sum_{i=1}^{M_{N}}\left[\tanh \left(\sum_{j=1}^{\pi_{i}^{-1}(k)} y_{\pi_{i}(j)}\right)-\tanh \left(\sum_{j=1}^{\pi_{i}^{-1}(k)-1} y_{\pi_{i}(j)}\right)\right] \tag{29}
\end{equation*}
$$

This linearization technique is an approximation to the Shapley Values.(?)

Experiments: Stanford Sentiment Tree Bank

- Unigram Word Scores: Correlation with the logistic regression coefficient

Attribution Method	Heat Map
Gradient	It's easy to love Robin Tunney - she's pretty and she can act -
	but it gets harder and harder to understand her choices.
Leave one out (Li et al., 2016)	It's easy to love Robin Tunney - she's pretty and she can act -
	but it gets harder and harder to understand her choices.
Cell decomposition (Murdoch \& Szlam, 2017)	It's easy to love Robin Tunney - she's pretty and she can act -
Integrated (Sundararajan 2017)	gradients et
Contextual tion	It's easy to love Robin Tunney - she's pretty and she can act -
	but it gets harder and harder to understand her choices.
	It's easy to love Robin Tunney - she's pretty and she can act -

Table 2: Heat maps for portion of review from SST with different attribution techniques. Only CD captures that the first phrase is positive.

Identifying Dissenting Subphrases

- "used to be my favorite"
- favorite is positive, used to be is negative

Attribution Method	Heat Map							
Gradient	used	to be	my	favorite	not	worth	the	time
Leave One Out (Li et al., 2016)	used	to be	my	favorite	not	worth	the	time
Cell decomposition (Murdoch \& Szlam, 2017)	used	to be	my	favorite	not	worth	the	time
Integrated gradients (Sundararajan et al., 2017)	used	to be	my	favorite	not	worth	the	time
Contextual decomposition	used	to be	my	favorite	not	worth	the	time
Legend Very Negative		Negative	Neutra	al Positive	Very Positive			

Table 1: Heat maps for portion of yelp review with different attribution techniques. Only CD captures that "favorite" is positive.

Contextual Decomposition Captures Negation

Contextual Decomposition

Figure 1: Distribution of scores for positive and negative negation coefficients relative to all interaction coefficients. Only leave one out and CD are capable of producing these interaction scores.

Identifying Similar Phrases

- Compare Dense embeddings β_{T} average for phrases across the training set and validation set
- Get nearest neghbors

not entertaining	not bad	very funny	entertaining	bad
not funny	never dull	well-puttogether piece	intelligent	dull
not engaging	n't drag	entertaining romp	engaging	drag
never satisfactory	never fails	very good	satisfying	awful
not well	without sham	surprisingly sweet	admirable	tired
not fit	without missing	very wellwritten	funny	dreary

Table 3: Nearest neighbours for selected unigrams and interactions using CD embeddings

