Learnt Prior VAE Previous Papers

Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read

Nonparametric Variational Auto-encoders for Hierarchical Representation Learning

- Prasoon Goyal, Zhiting Hu, Xiaodan Liang Chenyu Wang, Eric P. Xing
- ICCV 2017

Motivation

• VAE Loss = Reconstruction Error + Regularization

$$E_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{m})}[log_{p_{\theta}}(\boldsymbol{x}_{m}|\boldsymbol{z})] - D_{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{m})||p_{\theta}(\boldsymbol{z}))$$
(1)

- Bayesian regularization over the latent space, which enforces the posterior of the hidden code vector matches a prior distribution.
- this prior is a standard single mode normal distribution that enables convenient inference and learning
- overly simplified representations which lose rich semantics present in the data
- For example, a large video corpus can encode rich human activity with underlying intricate temporal dependencies and hierarchical relationships.
- desirable to develop new representation learning approaches with great modeling flexibility and structured interpretability

- hierarchical nonparametric bayesian prior with VAE
- unsupervised hierarchical representation learning of sequential data
- As opposed to fixed prior distributions learn both the VAE parameters and the nonparametric priors jointly from the data

- $\mathbf{x}^m = (x_{mn})_{n=1}^{N_m}$: sequence *m* of length N_m
- capture a representation of each data sample x^m and learn a structured representation of the entire corpus

Dirichlet Process

- Intuition: A stick of unit length, break at random location, left part is π_1 and right part keep doing this
- $\sum_{i=1}^{N} \pi_i = 1$

$$v_i \sim Beta(1,\gamma), \qquad \pi_i = v_i \prod_{j=1}^{i-1} (1-v_j)$$

 $w_i \sim G_0, \qquad \qquad G = \sum_{i=1}^{\infty} \pi_i \delta_{w_i}$

э

- Extend Stick Breaking Process to tree structure
- Start at the root node (level 0), and obtain probabilities over its child nodes (level 1) using a DP. Then recursively run a DP on each level 1 node to get probabilities over level 2 nodes, and so on.
- This defines a probability distribution over paths of an infinitely wide and infinitely deep tree
- Root Node $\pi_1 = 1$
- ith node at level 1 $\pi_{1i} = \pi_1 v_{1i} \prod_{j=1}^i (1 v_{1j})$
- For *jth* child at level 2 of *ith* level node $\pi_{1ij} = \pi_1 \pi_{1i} v_{1ij} \prod_{k=1}^{j} (1 v_{1ik})$. This process is repeated to infinity

nested Chinese Restaurant Prior

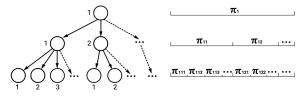


Figure 2. Left: a sample tree structure draw from nCRP. Right: The respective tree-based stick-breaking construction. The stick length of the root node is $\pi_1 = 1$. Each node performs a stickbreaking process on its stick segment to construct its children.

- The generative model assumes a tree with infinite depth and branches
- generates data sequences through root-to-leaf random walks along the paths of the tree.
- Each node p has a parameter α_p depends on the parameter vector of the parent node to encode the hierarchical relation.
- for every node p of the tree, draw a D-dimensional parameter vector α_p , according to $\alpha_p \sim N(\alpha_{par(p)}, \sigma^2 I)$, For root node define $\alpha_{par(p)} = \alpha^*$
- Each data sequence x_m is modeled as a mixture of the paths down the tree, and each element x_{mn} is attached to one path sampled from the mixture.

- For each edge e of the tree, sample $\textit{v}_{me} \sim \textit{Beta}(1,\gamma^*)$
- denote the collection of all v_{me} for sequence m as \boldsymbol{V}_m
- $\pi(V_m)$ denotes the probabilities of the leaf nodes
- For each element x_{mn} in x_m, draw a path c_{mn} according to the multinomial distribution Mult(π(V_m)).
- the final latent representation z_{mn} according to $N(c_{\alpha_{mn}}, \sigma_D^2 I)$. which is the emission distribution defined by the parameter associated in the leaf node of path c_{mn} .
- parameters to estimate: α_{p} , V_{m} , path assignments c, heta, ϕ

Optimization: Variational Inference

- For each node p of the tree, the parameter vector α_p is distributed as $\alpha_p \sim N(\mu_p, \sigma_p^2 I)$, where μ_p is a D-dimensional vector and σ_p is a scalar.
- For sequence m, the DP variable at edge e, v_{me} is distributed as $v_{me} \sim Beta(\gamma_{me,0}, \gamma_{me,1})$, where $\gamma_{me,0}$ and $\gamma_{me,1}$ are scalars.
- For data x_{mn} , the path assignment variable c_{mn} is distributed as $c_{mn}Mult(\phi_{mn})$, where the dimension of ϕ_{mn} is equal to the number of paths in the tree.
- We want to find optimal variational parameters that maximize the variational lower bound

$$\mathcal{L} = E_q[\log p(W, X|\Theta)] - E_q[\log q_\nu(W)]$$
(2)

where W denotes the collection of latent variables, $X = \{z_{mn}\}$ are the latent vector representations of observations, Θ are the hyperparameters, and $\nu = \{\mu_p, \sigma_p, \gamma_{me,0}, \gamma_{me,1}, \phi_{mn}\}$ are variational parameters.

Variational Inference

$$p(W, X|\Theta)$$
(5
= $\sum_{p} \log p(\boldsymbol{\alpha}_{p} | \boldsymbol{\alpha}_{par(p)}, \sigma_{N}) + \sum_{m,e} \log p(v_{me} | \gamma^{*})$
+ $\sum_{m,n} \log p(c_{mn} | \boldsymbol{V_{m}}) + \log p(\boldsymbol{z}_{mn} | \boldsymbol{\alpha}, c_{mn}, \sigma_{D})$

$$\mu_p = \sigma_p^2 \cdot \left(rac{oldsymbol{\mu}_{par(p)} + \sum_{r \in ch(p)} oldsymbol{\mu}_r}{\sigma_N^2}
ight)$$

э

$$q^{*}(v_{me}|\gamma_{me,0},\gamma_{me,1}) \sim Beta(\gamma_{me,0},\gamma_{me,1})$$
(11)
where $\gamma_{me,0} = 1 + \sum_{n=1}^{N_{m}} \sum_{p:e \in p} \phi_{mnp}$ (12)
 $\gamma_{me,1} = \gamma^{*} + \sum_{n=1}^{N_{m}} \sum_{p:e < p} \phi_{mnp}$ (13)

$$q^*(c_{mn}|\boldsymbol{\phi}_{mn}) \sim Mult(\boldsymbol{\phi}_{mn}) \tag{14}$$

where

$$\phi_{mnp} \propto \exp\left\{\sum_{e:e \in p} \left[\Psi(\gamma_{me,0}) - \Psi(\gamma_{me,0} + \gamma_{me,1})\right] + \sum_{e:e < p} \left[\Psi(\gamma_{me,1}) - \Psi(\gamma_{me,0} + \gamma_{me,1})\right] - \frac{1}{2\sigma_D^2} \left[(\boldsymbol{z}_{mn} - \boldsymbol{\mu}_p)^T(\boldsymbol{z}_{mn} - \boldsymbol{\mu}_p) + \sigma_p^2\right]\right\}$$
(15)

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

∃ < n < 0</p>

- Keep the nCRP parameters fixed and then optimize NN parameters
- Alternating optimization
- Heuristic Ways to dynamically update tree structure

Algorithm	Mean test log-likelihood
VAE-StdNormal	-28886.90
VAE-nCRP	-28438.32

Learnt Prior VAE Previous Papers Presenter: Arshdeep Sekhon https://qdata.

- 3 ▶

Experiments: Video Classification

Category	K-Means	VAE-GMM	VAE-nCRP
Board_trick	44.6	47.2	31.3
Feeding_an_animal	57.0	42.5	53.8
Fishing	33.7	39.0	48.9
Woodworking	38.9	40.5	60.8
Wedding_ceremony	59.8	54.3	63.6
Birthday_party	6.5	7.4	27.8
Changing_a_vehicle_tire	31.9	39.7	45.3
Flash_mob_gathering	43.4	40.1	38.2
Getting_a_vehicle_unstuck	52.9	50.6	65.9
Grooming_an_animal	2.9	14.5	17.3
Making_a_sandwich	47.1	54.7	49.3
Parade	28.4	33.8	19.8
Parkour	4.5	19.8	27.7
Repairing_an_appliance	42.3	58.6	47.4
Sewing_project	1.6	24.3	18.4
Aggregate over all classes	34.9	39.1	42.4

Table 3. Classification Accuracy (%) on TRECVID MED 2011.

→ ∢ ∃ →

The Loracs Prior for VAEs: Letting the trees speak for the data

Sharad Vikram, Matthew D. Hoffman, Matthew J. JohnsonAISTATS 2019

- unimodal simple distribution too simple
- more opinionated prior on the VAE's latent vectors: the time marginalized coalescent(TMC)
- TMC: interpretable Bayesian nonparametric hierarchical clustering model that can encode rich discrete and continuous structure

- incorporates uncertainty over tree structure $r(\tau)$
- a likelihood model for data $r(z_{1:N}|\tau)$, with the goal of sampling the posterior distribution $r(\tau|z_{1:N})$.
- Phylogeny: rooted binary trees with N labeled leaves adorned with branch lengths

- TMC defines a prior disrtibution over phylogenies
- A phylogeny is (V, E, T) a directed fully binary tree with vertex set V , and edges E with time labels $T : V \rightarrow [0, 1]$. where $t_v = T(V)$
- $V_{leaf} = \{1, \cdots, N\}$
- Separate nodes into V_{leaf} and V_{int}
- $V = V_{int} \bigcup V_{leaf}$
- directed edges of the tree are encoded in the edge set $E \subset V_{int} \times V$, where we denote the root vertex as v_{root} and for $v \in V$ v_{root} we denote the parent of v as $\pi(v) = w$ where $(w, v) \in E$

- The TMC samples a random tree structure (V, E) by a stochastic process in which the N leaves are recursively merged uniformly at random until only one vertex is left.
- This process yields the probability mass function on valid (V, E) pairs given by

$$r(V,E) = rac{(N-1)!}{\prod_{v \in V_{\mathrm{int}}} c(v)} \prod_{i=1}^{N-1} {i+1 \choose 2}^{-1}$$

Given the tree structure, time labels are generated via the stick-breaking process

$$t_v = egin{cases} 0 & v = v_{\mathrm{root}}, \ 1 & v \in V_{\mathrm{leaf}}, \ t_{\pi(v)} - eta_v(1 - t_{\pi(v)}) & v \in V_{\mathrm{int}} \setminus \{v_{\mathrm{root}}\}, \end{cases}$$

where $\beta_v \sim Beta(a, b)$ for $v \in V$. These time labels encode a branch length $t_v - t_{\pi(v)}$ for each edge $e = (\pi(v), v) \in E$. We denote the overall density on phylogenies with N leaves as $TMC_N(\tau; a, b)$

- Data points are leaf nodes
- Define a likelihood model $r(z_{1:N}|\tau)$
- z_n corresponds to leaf vertex $n \in V_{leaf}$
- $z_{v_{root}} = N(0, I)$
- parent of $v = \pi(v)$
- $z_v|z_{\pi_v} = N(z_{\pi(v)}, (t_v t_{\pi(v)})I)$
- $z_{v_{root}} = N(0, I)$
- Why? : Use GGM structure to marginalize out internal vertices v ∈ V_{int} to get marginal density r(z_{1:N}|τ)
- Final overall prior density $r(z_{1:N}|\tau) = TMC_N(\tau; a, b)r(z_{1:N}|\tau)$

- The above with *N* leaves and a GRW likelihood model can be a prior on a set of N hierarchically structured data : nodes closer to each other in terms of tree dsitance have similar location values
- Location values
- Sampling new data: $z_{N+1} : r(Z_{N+1}|z_{1:N}, \tau)$
- Need to select a branch to add a new leaf node and a time label
- $r(e_{N+1}|V, E)$ and $r(t_{N+1}|e_{N+1}, V, E)$

- this phylogeny based prior is interpetable discrete structure in the latent space
- Step 1: generate $z_{1:N}$ according to the TMC prior
- Step 2: generate x_{1:N}

$$au \sim TMC_N(au; a, b)$$
 (3)

$$z_{1:N}|\tau \sim r(z_{1:N}|\tau) \tag{4}$$

$$x_n|z_n \sim p_{\theta}(x_n|z_n)$$
 (5)

- posterior distribution is intractable r(τ|z_{1:N}) is analytically intractable due to r(z_{1:N}) (sum over all possible structures)
- Use MCMC + Metropolis Hastings + subtree prune and regraft

$$\mathcal{L}[q] = \mathbb{E}_q \left[\log \frac{p(\tau, z_{1:N}, x_{1:N})}{q(\tau) \prod_n q(z_n \mid x_n)} \right]$$
(8)

For fixed $q_{\phi}(z_n | x_n)$, we can sample the optimal $q^*(\tau)$,

$$q^*(\tau) \propto \exp\{\mathbb{E}_q\left[\log p(\tau, z_{1:N}, x_{1:N})\right]\}$$
(9)

- Visualizing inducing points
- Hierarchical Clustering
- Generating Samples

Experiments: Hierarchical Clustering

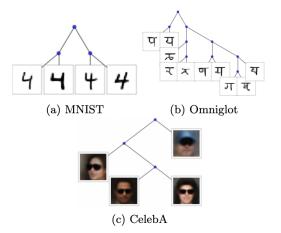


Figure 4: An example learned subtree from a sample of $q(\tau; s_{1:M})$ for each dataset. Leaves are visualized by passing inducing points through the decoder.

Prior	MNIST	Omniglot
Normal	-83.789	-89.722
MAF	-80.121	-86.298
Vamp	-83.0135	-87.604
LORACs	-83.401	-87.105

Table 2: MNIST/Omniglot test log-likelihoods

- ∢ ∃ →

Faithful inversion of generative models for effective amortized inference

 Stefan Webb, Adam Golinski, Robert Zinkov, N. Siddharth, Tom Rainforth, Yee Whye Teh, Frank Wood

- q(z|x) is the inference network: deficiencies in inference network are propagated to the generative model
- VAE: Coarse Grain Structure(Bayesian Netwrok encodes a dependency) and a Fine Grain Structure (Neural nets)
- Amortized Inference: Graphical Mode Inversion (Invert the generative model to give a GM approximating the posterior)

Choosing the best structure for the ivnerse graphical model?

- invert structure of generative model
- introduces conditional independencies not present in true distribution
- Consequently, they cannot represent the true posterior even in the limit of infinite neural network capacities.
- Fully connected Bayesian Network for inverse graphical model
- Though such a model is expressive enough to correctly represent the data given infinite capacity and training time, it ignores substantial available information from the forward model
- leading to reduced performance for finite training budgets and/or network capaciti

