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Motivation

» A protein family: group of proteins that share a common
evolutionary origin, reflected by their related functions and
similarities in sequence or structure.

P> Very large space of sequences, only few observed

» conservation of function imposes boundaries on sequence
variation and ensures 3D structure similarity



Motivation

P> to maintain energetically favorable interactions, residues in
spatial proximity may co-evolve across a protein family

P suggests that residue correlations could provide information
about amino acid residues that are close in structure
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Residue-Residue Correlation

P correlated residue pairs within a protein are not necessarily
close in 3D space
» Confounding Correlations:
> transitivity of correlations: if (i,j),(j,k) correlated, (i,k) also
correlated
» technical noise, oligomerization, protein-protein, or
protein-substrate interactions or other spatially indirect or
spatially distributed interactions can result in co-variation
between residues not in close spatial proximity.



Motivation

This Paper:

Infer evolutionary constraints from a set of sequence homologs of a
protein.

Predicting 3D Protein Structure from these evolutionary
interactions.
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Methods: Pipeline

1. Protein sequence alignment of an iso-structural protein family
(from PFAM database) of length L

2. Residue-Residue Coupling Scores(DI ¢ R'<!) for all pairs
of residues in [1]

3. Derivation of a ranked set of evolutionarily inferred contacts
(EICs) from [2]

4. Prediction of 3D structures by using EICs



Step 1: Align Evolutionarily Diverged Sequences

Protein sequence alignment for the protein family containing the
target protein (from PFAM database)
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Step 2: Residue Coupling Scores
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» For sequence length L for a protein family, a matrix
DI € R™L is inferred:
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> q: types of residues (20)
» L: length of sequence (50-250 in these experiments)



Computing Residue Coupling Scores

» Estimate a p(Ai,...,AL) such that it maximizes entropy
S=—-> P(A1,...,A)InP(A1,...,AL) subject to the
following constraints:

Pi(A;) = Z Pi(A1,...,A) = fi(A)  (3)

A={1,....q} ki

Pij(Ai, Aj) = > Pi(A1, ..., AL) = f;(Ai, Aj) (4)
Ak:{lz"'zq}7k7éiaj

» Make empirical correlation matrix
Cij = f;(Ai, Aj) — fi(Aifi(A)) (5)
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3. Derivation of a ranked set of evolutionary inferred
contacts (EICs)

» evolutionary inferred contacts (EICs): predicted to be close in
3D space
» Convert the above DI matrix into EICs using rules:

» Remove residue pairs close in sequence

P consistent with predicted secondary structure: PredictProtein
and PsiPred Algorithms
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predicted contacts (EICs)

» The first N, inferred EIC pairs are ranked according to the D/
scores and used as distance constraints to distance geometry
and simulated annealing calculations



Step 4: Prediction of 3D structures

EICs used as input to distance geometry and simulated annealing
calculations.

tested on multiple protein families (from PFAM database)with
range of Multiple Sequence Alignment of 71/161/223
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Rank predicted structures using quality
measure of backbone alpha torsion and
beta sheet twist



Results:Prediction of 3D structures
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Evaluation of residue-residue contact prediction:
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» BNM: Bayesian network model (also global)
» SCA: statistical coupling analysis (local)

» MI: Mutual Information(local) coupling analysis (local)



C, — RMSD ! Error as a function of number of sequences
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Other factors:

» Which sequences are used/distribution of sequences in the
protein family? For example, this algorithm removes
sequences with over 70% residue identity to family neighbors
are down-weighted

» uneven sampling in the space of natural sequences, due to

4expeumenlaLasceLtammﬁnI bias during sequencing.

lthe root-mean-square deviation of atomic positions- average distance
between the atoms (usually the backbone atoms) of superimposed-proteins.



Conclusion

» pairwise without indirect/confounding interactions for
residue-residue contact prediction

» DI based(global) works better than MI based (local)

P> Lots of feature engineering: data selection, removal of invalid
correlations, etc
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