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Introduction

» for many tasks, simply knowing which features were important
to a model’s prediction may not provide enough insight to
understand model behavior.

» The interactions between features within the model may better
help us understand the model, and why certain features are
more important than others.

» This paper: Extension of Integrated Gradients: Integrated
Hessians



Method: Integrated Gradients Review

Model is a function f(x) : R — R
Say x’ is some baseline value
We want to explain feature i for sample x

Feature attribution of feature / using Integrated Gradients:

VoF(X + (afx — X'
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» To use Integrated Gradients method, the only requrement is
the function be differentiable from x’ to x.



Method: Integrated Hessians

> Integrated Gradients

VOof(x 4 (ax — X!
610 = (s ) [ o™= a0

» The Integrated Gradients for a differentiable model
f(x) : RY — R is itself a differentiable function
#i(x) : RY = R.
» Now change problem to feature attribution of j to function
®i(x).
Fij(x) = j(¢i(x)) (3)



Method: Integrated Hessians

explanation of the importance of feature i in terms of the input
value of feature j. If i # j:

(x) = (6 = X)) (x5 — x7)

a2f (X' + aB(x — x'))
/5 0 /a 0 Bt dadp (4)

Some caveats:

» proof requires f must satisfy Leibniz Integral Rule: so that
integration and differentiation are interchangeable

» requires function and derivative are continuous over x in the
integration region: ReLU can't be explained



Integrated Hessians Derivation
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Integrated Hessians Derivation

We can proceed by plugging equation 9 into the original definition
of I j(x):

" Loagi(x + B(x — X))
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. o s (10)

Fij(x) = (5 —x
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Fundamental Axioms for Interaction Values: Interaction
Completeness

SN Tri(x) = f(x) - F(X) (14)
i

Satisfying interaction completeness is important because it
demonstrates a relationship between model output and interaction
values. Without this axiom, it is unclear how to interpret the scale
of interactions.



Fundamental Axioms for Interaction Values: Self
Completeness
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Figure: Self Completeness

main effect of feature i after interactions with all other features
have been subtracted away. So if only one feature, or I; j = 0:

Fii(x) = ¢i(x)

(15)



Other Axioms

» interaction symmetry ['; ; =T ;
> interaction sensitivity and

> interaction linearity



Computing Integrated Hessians

> discrete sum approximation of the integral, similar to how
Integrated Gradients

» 50 to 300 discrete steps suffice to approximate the double
integral in most cases.



Smoothing ReLU Networks

SoftPlus(x) = log(1 + €).
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Figure: smooth approximation of ReLU



Smoothing ReLU Networks
» ReLU: second partial derivatives equal to zero in all places
» the RelLU activation function has a smooth approximation —

the SoftPlus function:
1
SoftPlusg(x) = 3 log(1 + ™). (17)

The Level Curves of the Same Network
The Level Curves of a Neural Network with ReLU Activation after Replacing ReLU with Softplus
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Figure: Replacing ReLU activations with SoftPlusg activations with

B = 10 smooths the decision surface of a neural network: gradients tend
to be more homogeneous along the integration path. Orange arrows
show the gradient vectors at each point along the path from the
reference (green x) to the input (blue dots).



Experiments: Explaining XOR

» Consider an XOR neural network

» because both features are on, which on their own should
increase the model output, but in interaction with each other
cancel out the positive effects and drive the model's output
back to the baseline.

Figure



Experiments: Explaining XOR

» input gradients and input hessians have completely flattened
(saturated) at all points
» By integrating between the baseline and the samples,

Integrated Hessians is capable of correctly detecting the
negative interaction between the two features.



NLP

> pre-trained weights for Distil BERT
» fine-tune the model on the Stanford Sentiment Treebank
dataset: predict movie review as positive or negative sentiment
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NLP: Saturation Effects
Word-level attributions: .-l terrible l awful , horrible -

Y

Interactions with the . ] )
a bad , terrible , awful , horrible movie

word "movie™
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FIgU re. Although the word "movie" interacts negatively with all negative modifying adjectives, those
negative adjectives themselves all interact positively. The more negative adjectives are in the sentence,
the less each individual negative adjective matters towards the overall classification of the sentence.

Interactions Between Negative
Adjectives




NLP: Trying to understand why some models perform better

than others

Interactions learned by a pre-trained

transformer architecture
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Interactions learned by a CNN
trained from scratch

this, this,

this - o ot -0.0015
movie - this, movie, - 0.0010
movie was | 0.0005
movie, was, 7
was - was s . 0.0000
ot this, was, not, - —0.0005
not not bad -0.0010
bad - N = -0.0015
| | | |
) & CJ > >
DD S

FIgU €. Here, we examine interactions on the sentence “this movie was not bad." We compare two
models trained to do sentiment analysis on the Stanford Sentiment dataset: a pre-trained transformer,
DistilBERT (left), (98.2% confidence), and a convolutional neural network trained from scratch (97.6%
confidence). The transformer picks up on negation patterns: “not bad” has a positive interaction,
despite the word “bad” being negative. The CNN mostly picks up on negative interactions like “movie

not” and “movie bad".
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Heart Disease Prediction

» 208 patients with 13 associated features

» When the Expected Hessians interactions are aggregated
across the dataset, they reveal that our model has learned that
women with calcium deposition in one coronary artery are less
likely than men to be diagnosed with coronary artery disease

Interaction between number of major vessels containing
calcium and patient gender
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Drug combination response prediction

» drug combination response in acute myeloid leukemia

> Features: drugs and targets and gene expression for cancer
cells

> presence or absence of the drug Venetoclax in the drug
combination is the most important feature

» not enough: while the presence of Venetoclax is generally
predictive of a more responsive drug combination, the amount
of positive response to Venetoclax is predicted to vary across
samples.

> variablity in drug respose: which drug it is combined with



Drug combination response prediction

Attribution to Venetoclax-Artemisinin
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FIgU €. Top Left: Integrated Gradients values for Venetoclax. Top Right: Venetoclax interactions
with Artemisinin across all samples. Bottom: Venetoclax and Artemisinin interaction is_driven by
expression of cenes in cancer sambles



Conclusions

» Interaction as the combined effect of two features to the
output of a model,
» the explanation of one feature's importance in terms of

another.



Baselines and Expected Hessians
» Baseline: some data that is uninformative
» Single Baseline is challenging in some datasets:
» Use Expected Gradients Instead:

IEG(X) = Ex’,a [(Xi - Xl{)af(X/ +d()l<,,(x — X/)] (18)

where the expectation is over both x” ~ D for the training
distribution D and o ~ U(0,1). We can apply Expected
Gradients to itself to get Expected Hessians:

Pf(x' —x
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E

where the expectation is over x' ~ D, a ~ U(0,1) and
B~ U(0,1).
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