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Introduction

I for many tasks, simply knowing which features were important
to a model’s prediction may not provide enough insight to
understand model behavior.

I The interactions between features within the model may better
help us understand the model, and why certain features are
more important than others.

I This paper: Extension of Integrated Gradients: Integrated
Hessians



Method: Integrated Gradients Review

I Model is a function f (x) : Rd → R
I Say x ′ is some baseline value
I We want to explain feature i for sample x

I Feature attribution of feature i using Integrated Gradients:

φi (x) = (xi − x ′i )

∫ 1

0
∂
f (x ′ + (α(x − x ′)))

∂xi
dα (1)

I To use Integrated Gradients method, the only requrement is
the function be differentiable from x ′ to x .



Method: Integrated Hessians

I Integrated Gradients

φi (x) = (xi − x ′i )

∫ 1

0
∂
f (x ′ + (α(x − x ′)))

∂xi
dα (2)

I The Integrated Gradients for a differentiable model
f (x) : Rd → R is itself a differentiable function
φi (x) : Rd → R.

I Now change problem to feature attribution of j to function
φi (x).

Γi ,j(x) = φj(φi (x)) (3)



Method: Integrated Hessians

explanation of the importance of feature i in terms of the input
value of feature j. If i 6= j :

Γi ,j(x) = (xi − x ′i )(xj − x ′j )×∫ 1

β=0

∫ 1

α=0
αβ

∂2f (x ′ + αβ(x − x ′))

∂xi∂xj
dαdβ (4)

Some caveats:
I proof requires f must satisfy Leibniz Integral Rule: so that

integration and differentiation are interchangeable
I requires function and derivative are continuous over x in the

integration region: ReLU can’t be explained



Integrated Hessians Derivation

Γi ,j(x) := (xj − x ′j )×
∫ 1

β=0

∂φi (x
′ + β(x − x ′))

∂xj
dβ (5)

Consider the function ∂φi
∂xj

(x), and we first assume that i 6= j

∂φi
∂xj

(x) = (6)

(xi − x ′i )×
∂

∂xj

(∫ 1

α=0

∂f (x ′ + α(x − x ′))

∂xi
dα

)
= (7)

(xi − x ′i )×
∫ 1

α=0

∂

∂xj

(
∂f (x ′ + α(x − x ′))

∂xi

)
dα = (8)

(xi − x ′i )×
∫ 1

α=0
α
∂2f (x ′ + α(x − x ′))

∂xi∂xj
dα (9)



Integrated Hessians Derivation

We can proceed by plugging equation 9 into the original definition
of Γi ,j(x):

Γi ,j(x) := (xj − x ′j )×
∫ 1

β=0

∂φi (x
′ + β(x − x ′))

∂xj
dβ (10)

= (xj − x ′j )×
∫ 1

β=0
(x ′i − β(xi − x ′i )− x ′i ) (11)

∫ 1

α=0
α
∂2f (x ′ + α(x ′ − β(x − x ′)− x ′))

∂xi∂xj
dαdβ (12)

= (xj−x ′j )(xi−x ′i )
∫ 1

β=0

∫ 1

α=0
αβ

∂2f (x ′ + αβ(x − x ′))

∂xi∂xj
dαdβ (13)



Fundamental Axioms for Interaction Values: Interaction
Completeness

∑
i

∑
j

Γi ,j(x) = f (x)− f (x ′) (14)

Satisfying interaction completeness is important because it
demonstrates a relationship between model output and interaction
values. Without this axiom, it is unclear how to interpret the scale
of interactions.



Fundamental Axioms for Interaction Values: Self
Completeness

Γi ,i (x) = φi (x)−
∑
j 6=i

Γi ,j(x) (15)

Figure: Self Completeness

main effect of feature i after interactions with all other features
have been subtracted away. So if only one feature, or Γi ,j = 0:
Γi ,i (x) = φi (x)



Other Axioms

I interaction symmetry Γi ,j = Γj ,i

I interaction sensitivity and
I interaction linearity



Computing Integrated Hessians

I discrete sum approximation of the integral, similar to how
Integrated Gradients

I 50 to 300 discrete steps suffice to approximate the double
integral in most cases.



Smoothing ReLU Networks

SoftPlus(x) = log(1 + ex). (16)

Figure: smooth approximation of ReLU



Smoothing ReLU Networks
I ReLU: second partial derivatives equal to zero in all places
I the ReLU activation function has a smooth approximation –

the SoftPlus function:

SoftPlusβ(x) =
1
β

log(1 + eβx). (17)

Figure: Replacing ReLU activations with SoftPlusβ activations with
β = 10 smooths the decision surface of a neural network: gradients tend
to be more homogeneous along the integration path. Orange arrows
show the gradient vectors at each point along the path from the
reference (green x) to the input (blue dots).



Experiments: Explaining XOR

I Consider an XOR neural network
I because both features are on, which on their own should

increase the model output, but in interaction with each other
cancel out the positive effects and drive the model’s output
back to the baseline.
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Experiments: Explaining XOR

I input gradients and input hessians have completely flattened
(saturated) at all points

I By integrating between the baseline and the samples,
Integrated Hessians is capable of correctly detecting the
negative interaction between the two features.



NLP
I pre-trained weights for DistilBERT
I fine-tune the model on the Stanford Sentiment Treebank

dataset: predict movie review as positive or negative sentiment
a painfully funny ode to bad behavior .
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Figure: Interactions in text reveal learned patterns such as the phrase
"painfully funny" having positive interaction despite the word "painfully"
having negative attribution. These interactions are not evident from
attributions alone.



NLP: Saturation Effects
a bad , terrible , awful , horrible movie

a bad , terrible , awful , horrible movie
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Figure: Although the word "movie" interacts negatively with all negative modifying adjectives, those
negative adjectives themselves all interact positively. The more negative adjectives are in the sentence,
the less each individual negative adjective matters towards the overall classification of the sentence.



NLP: Trying to understand why some models perform better
than others

thi
s
mo
vie wa

s
no
t

ba
d

this

movie

was

not

bad

this,
movie

this,
was

this,
not

this,
bad

this,
movie

movie,
was

movie,
not

movie,
bad

this,
was

movie,
was

was,
not

was,
bad

this,
not

movie,
not

was,
not

not,
bad

this,
bad

movie,
bad

was,
bad

not,
bad 0.4

0.2

0.0

0.2

0.4

Interaction
Value

Interactions learned by a pre-trained
transformer architecture

th
is

mo
vie wa

s
no
t

ba
d

this

movie

was

not

bad

this,
movie

this,
was

this,
not

this,
bad

this,
movie

movie,
was

movie,
not

movie,
bad

this,
was

movie,
was

was,
not

was,
bad

this,
not

movie,
not

was,
not

not,
bad

this,
bad

movie,
bad

was,
bad

not,
bad 0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

Interaction
Value

Interactions learned by a CNN
trained from scratch

Figure: Here, we examine interactions on the sentence “this movie was not bad." We compare two
models trained to do sentiment analysis on the Stanford Sentiment dataset: a pre-trained transformer,
DistilBERT (left), (98.2% confidence), and a convolutional neural network trained from scratch (97.6%
confidence). The transformer picks up on negation patterns: “not bad” has a positive interaction,
despite the word “bad” being negative. The CNN mostly picks up on negative interactions like “movie
not” and “movie bad”.



Heart Disease Prediction
I 298 patients with 13 associated features
I When the Expected Hessians interactions are aggregated

across the dataset, they reveal that our model has learned that
women with calcium deposition in one coronary artery are less
likely than men to be diagnosed with coronary artery disease
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Figure: Left: Expected Gradients feature importance of the number of
major vessels with accumulation of calcium : More vessels with calcium
build-up indicated increased risk. Right: Expected Hessians feature
interactions between patient gender and the number of major vessels
containing calcium.



Drug combination response prediction

I drug combination response in acute myeloid leukemia
I Features: drugs and targets and gene expression for cancer

cells
I presence or absence of the drug Venetoclax in the drug

combination is the most important feature
I not enough: while the presence of Venetoclax is generally

predictive of a more responsive drug combination, the amount
of positive response to Venetoclax is predicted to vary across
samples.

I variablity in drug respose: which drug it is combined with



Drug combination response prediction
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Figure: Top Left: Integrated Gradients values for Venetoclax. Top Right: Venetoclax interactions
with Artemisinin across all samples. Bottom: Venetoclax and Artemisinin interaction is driven by
expression of genes in cancer samples.



Conclusions

I Interaction as the combined effect of two features to the
output of a model,

I the explanation of one feature’s importance in terms of
another.



Baselines and Expected Hessians
I Baseline: some data that is uninformative
I Single Baseline is challenging in some datasets:
I Use Expected Gradients Instead:

φEGi (x) = Ex ′,α

[
(xi − x ′i )

∂f (x ′ + α(x − x ′)

dxi

]
(18)

where the expectation is over both x ′ ∼ D for the training
distribution D and α ∼ U(0, 1). We can apply Expected
Gradients to itself to get Expected Hessians:

ΓEG
i ,j (x) =

E

[
(xi − x ′i )(xj − x ′j )αβ

∂2f (x ′ + αβ(x − x ′)

∂dxi∂dxj

]
(19)

where the expectation is over x ′ ∼ D, α ∼ U(0, 1) and
β ∼ U(0, 1).
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