https://qdata.github.io/deep2Read/

You Only Look Once: Unified, Real-Time Object Detection

Redmon et al.

2015

Presented by Eli Lifland, 3/22/2020

Prior Work

- Prior work repurposed classifiers to perform detection, running classifier on various regions of image
- Deformable Parts Model (DPM)
 - Sliding window approach, pipeline to:
 - Extract features
 - Classify regions
 - Predict bounding boxes
- R-CNN:
 - Region proposal instead of sliding windows
 - Fast/Faster R-CNN use NNs to propose regions

YOLO Detection System

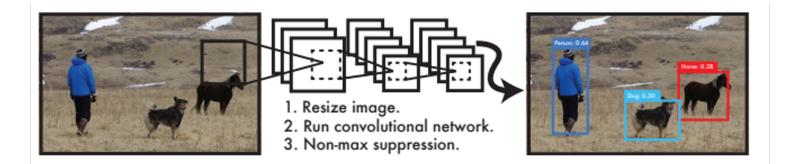


Figure 1: The YOLO Detection System. Processing images with YOLO is simple and straightforward. Our system (1) resizes the input image to 448×448 , (2) runs a single convolutional network on the image, and (3) thresholds the resulting detections by the model's confidence.

YOLO Model

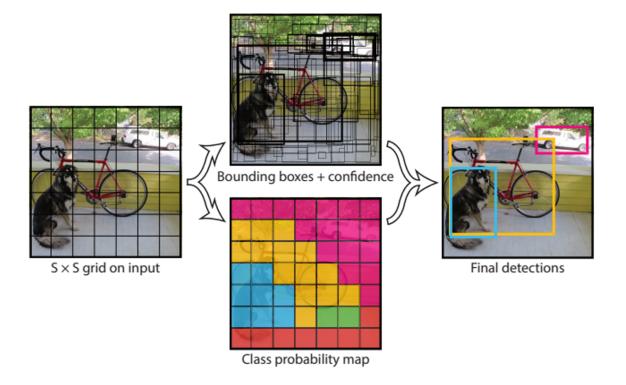


Figure 2: The Model. Our system models detection as a regression problem. It divides the image into an $S \times S$ grid and for each grid cell predicts B bounding boxes, confidence for those boxes, and C class probabilities. These predictions are encoded as an $S \times S \times (B * 5 + C)$ tensor. https://qdata.github.io/deep2Read/

Network Design

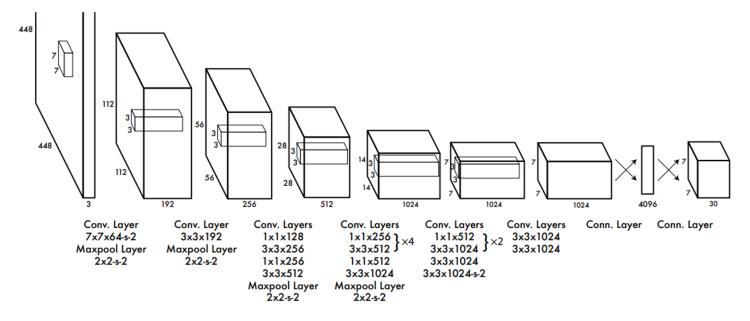


Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1×1 convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification task at half the resolution (224×224 input image) and then double the resolution for detection.

Training

- Pretrain first 20 layers on ImageNet, then convert to detection by adding last 4 conv, 2 FC layers
- Use sum-squared error because easy to optimize
- To avoid model instability due to gradient from cells w/o objects, weight loss from bounding box predictions higher and weight confidence predictions for boxes without objects lower
- Change in width/height of bounding box matters more for smaller objects than larger
 Take square root to reflect this
 - Take square root to reflect this

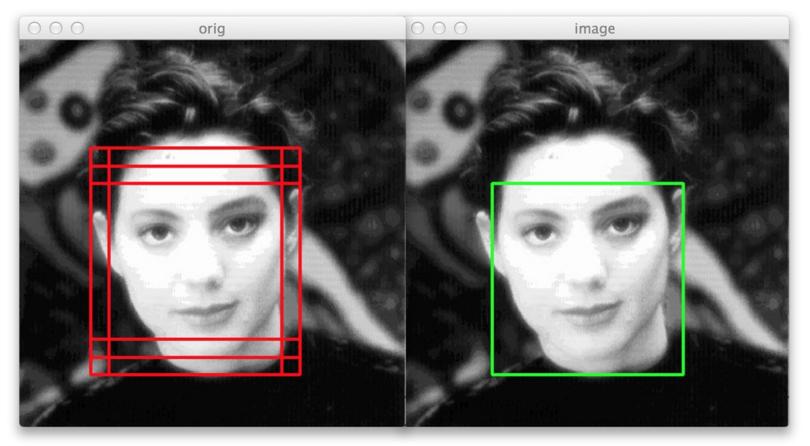
Training Loss

$$\begin{split} \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ &+ \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ &+ \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ &+ \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ &+ \sum_{i=0}^{S^2} \mathbb{1}_i^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2 \end{split}$$

https://qdata.github.io/deep2Read/

Non-Maximal Suppression

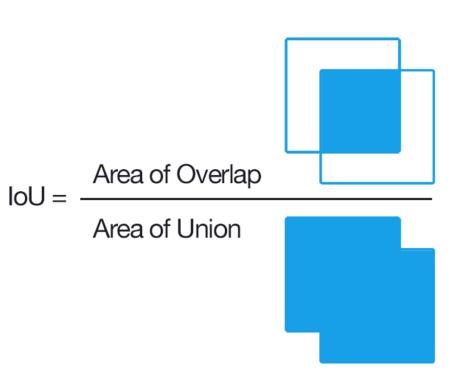
• Use during inference to avoid overlapping predictions



https://qdata.github.io/deep2Read/

Limitations

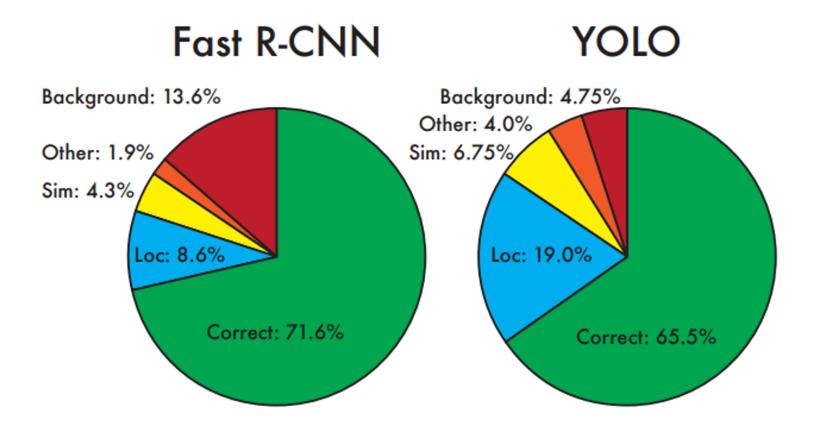
- Each grid cell limited to B=2 boxes and 1 class
 - Struggles with many small objects such as flocks of birds
- Loss function treats errors in small, large boxes the same even though errors in small boxes have bigger effect on IOU
 - Localization isn't great



Results: PASCAL VOC 2007

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [31]	2007	16.0	100
30Hz DPM [31]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [38]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[28]	2007+2012	73.2	7
Faster R-CNN ZF [28]	2007+2012	62.1	18
YOLO VGG-16	2007+2012	66.4	21

Results: Error Analysis



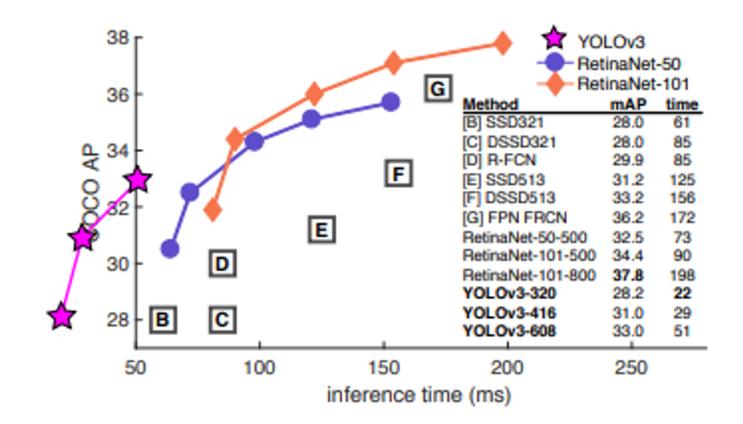
Results: Combining Fast R-CNN and YOLO

	mAP	Combined	Gain
Fast R-CNN	71.8	-	-
Fast R-CNN (2007 data)	66.9	72.4	.6
Fast R-CNN (VGG-M)	59.2	72.4	.6
Fast R-CNN (CaffeNet)	57.1	72.1	.3
YOLO	63.4	75.0	3.2

Results: Generalization to Art

	VOC 2007	Picasso		People-Art
	AP	AP	Best F_1	AP
YOLO	59.2	53.3	0.590	45
R-CNN	54.2	10.4	0.226	26
DPM	43.2	37.8	0.458	32
Poselets [2]	36.5	17.8	0.271	
D&T [4]	-	1.9	0.051	

Prologue: YOLOv3: An Incremental Improvement



Prologue: Joe Redmon

I stopped doing CV research because I saw the impact my work was having. I loved the work but the military applications and privacy concerns eventually became impossible to ignore.