
Bill Zhang

1

CNNs by Andrew Ng NOTES

Link: https://www.youtube.com/playlist?list=PLBAGcD3siRDjBU8sKRk0zX9pMz9qeVxud

GENERAL CNNS

1. What is Computer Vision?

• Computer vision problems

o Image classification

o Object detection

o Neural style transfer

• Large input images

o If we use standard fully connected matrix, scales horribly

o Hard to not overfit, hard to train

2. Edge Detection Example

• Standard CNN structure

o Edges to parts of objects to faces

• First, maybe detect horizontal and vertical edges

• How to detect?

o Start with 6x6 image

o Construct 3x3 matrix (filter)

▪ [[1 0 -1], [1 0 -1], [1 0 -1]]

o Convolve image with filter

▪ Take matrix and paste at top left edge

▪ Take element-wise product

▪ Keep sliding filter across image

o Results in a 4x4 matrix

o Python: conv-forward

o TF: tf.nn.conv2d

o Keras: Conv2D

• Large values mean edge

3. More Edge Detection

• What if light and dark parts are flipped?

o Can take abs val if it doesn’t matter

• Horizontal filter

o [[1 1 1], [0 0 0], [-1 -1 -1]]

• Possible other filters

o [[1 0 -1], [2 0 -2], [1 0 -1]]: Sobel filter

o [[3 0 -3], [10 0 -10], [3 0 -3]]: Scharr filter

o Could also learn the values by treating them like weights

▪ Neural networks can learn higher-level features

4. Padding

https://www.youtube.com/playlist?list=PLBAGcD3siRDjBU8sKRk0zX9pMz9qeVxud

Bill Zhang

2

• Convolution usually ends up with smaller output matrices

o Image shrinks on every layer

• (nxn) * (fxf) → (n-f+1 x n-f+1)

• Pixels on corners/edges are used a lot less in convolution

o Throwing away lots of information

• Pad the image with 1 pixel border of 0s

o (n+2p-f+1 x n+2p-f+1)

• Can pad with wider borders too

• Valid and Same convolutions

o Valid: no padding

▪ nxn * fxf → n-f+1 x n-f+1

o Same: pad so output size is the same as input size

▪ 2p = f-1

▪ f usually odd

5. Strided Convolution

• Convolve with a stride of 2

o Instead of stepping over 1 step, step 2 steps as filter is slided

o 7x7 * 3x3 = 3x3

• nxn * fxf with padding p and stride s = (n+2p-f)/s+1 x (n+2p-f)/s+1

• What if fraction not an integer?

o Take floor

• If stride causes part of filter to go out of image, floor applies

• Cross-correlation vs. convolution

o Some conventions flip the filter on the horizontal and vertical axes

o Then, convolve with the flipped matrix

o By convention, we do not flip

▪ This is technically cross-correlation, but is called convolution

o The mirroring operation makes the convolution op. associative

6. Convolutions Over Volume

• Convolutions on RGB images (nxnx3 volumes)

o Height x width x channels

o Filter is 3x3x3

▪ Results in 4x4 matrix

• Again, take element-wise product, just now across multiple layers

• If we only want to detect edges on one channel, just make other channels have 0 matrices

• What if we want to use multiple filters at the same time?

o Have more filters (e.g. 2); each outputs a 4x4 output

o Stack outputs together into 4x4x2 output volume

• Summary: (n x n x nc) * (f x f x nc) = n-f+1 x n-f+1 x nc’

o nc and nc’ are called depth or channels

• Can detect large number of features with this technique

Bill Zhang

3

7. One Layer of CNN

• Add a bias to each output matrix of the filters and apply nonlinearity to get final output

o Nonlinearities like Relu

• Stack up the final output matrices; result in 1 layer of CNN

• Analogy to 1 layer forward propogation

o z1 = W1*a0+b1

o a1 = g(z1)

o Input image = a0, each filter = W1, bias = b1, nonlinearity = g

• 10 filters that are 3x3x3 in one layer of a neural network: how many parameters does that layer

have?

o 27 parameters in each filter

o +1 for bias gives 28 parameters

o 10 of these makes 28*10 = 280 parameters

o Number of parameters fixed with changing input size

▪ Less prone to overfitting

• Summary of notation; If layer l is a convolution layer:

o f[l] = filter size

o p[l] = padding

o s[l] = stride

o nc
[l] = number of filters

o Each filter is: f[l] x f[l] x nc
[l-1]

o Activations: a[l] = nH
[l] x nW

[l] x nc
[l], A[l] = m x nH

[l] x nW
[l] x nc

[l]

o Weights: f[l] x f[l] x nc
[l-1] x nc

[l]

o Bias: 1 x 1 x 1 x nc
[l]

o Input: nH
[l-1] x nW

[l-1] x nc
[l-1]

o Output: nH
[l] x nW

[l] x nc
[l]

o nH
[l] = floor((nH

[l-1] + 2p[l] – f[l])/s[l] + 1); same for width

8. Simple Convolutional Network Example

• Example ConvNet

o Flatten last activation layer into 1D vector and feed to logistic/softmax unit to get final

output

o
• Types of layer in a CNN

Bill Zhang

4

o Convolution (Conv)

o Pooling (Pool)

o Fully connected (FC)

9. Pooling Layers

• Max pooling

o 4x4 → 2x2 by taking max of each quadrant

o Hyperparameters: f = 2, s = 2

o Indicates presence of feature within a quadrant

o No parameters!

• Input 5x5, f = 3, s = 1 → Output 3x3

• If 3D, same as conv layers

o Perform max pooling on each layer independently

• Another type: average pooling

o Take mean instead of max

o Sometimes, used in deep CNN layers to collapse into 1x1xN

• Could use padding hyperparameters, but almost never used!

10. CNN Example

• Some conventions have conv and pool in layer

• Some have them as separate layers

• We will use conv and pool in one layer

•

11. Why Convolutions?

• Parameter sharing and sparsity of connections

• Number of parameters in CNN is much fewer than normal FC layers

• Parameter sharing: A feature detector that’s useful in one part of the image is probably useful in

another part of the image

• Sparsity of connections: In each layer, each output value depends only on a small number of

inputs

• Cost function

Bill Zhang

5

o

12. Why look at case studies?

• Classic networks: LeNet-5, AlexNet, VGG

• ResNet (152 layer)

• Inception

13. Classic Networks

• LeNet-5 (1998)

o
• AlexNet (2012): made deep learning seem plausible

o
• VGG-16 (2015): simple but large, relatively uniform

Bill Zhang

6

o

14. ResNet

• Allow very deep CNNs to be trained

• Residual block

o Short-cut/skip before ReLU part

o
• Stack many residual blocks

o In practice, training plain network that’s is very deep causes training error to increase

o For ResNets, performance keeps on going down as layers increase

▪ Helps with vanishing/exploding gradients problem

15. Why ResNets Work

• X → Big NN → a[l]

• Add more layers to above with residual

• Identity function is easy for residual block to learn!

• Adding more layers does not hurt NN’s ability to learn

Bill Zhang

7

•
• However, we still have potential to improve performance

• Have to use “same” convolutions to do this technique

o Or, add a matrix to convert dimensions

16. Network In Network

• 1x1 filter convolutions just scalar multiplies the input with one channel

• If multiple channels, though, then it makes more sense since we end up with a single number for

each position with same height and width; also applies a ReLU nonlinearity

• Kind of like having a FC network for each height, width position

• Can shrink number of channels without changing height and width

o Or, maintain number of channels but add nonlinearity

17. Inception Network Motivation

• Want to try multiple filter dimensions or pooling with padding

o Stack up outputs from each dimension

•
• Instead of having to pick filter size/layer type, we can just let network pick

o However, this adds computational cost

• Can first reduce channels using 1x1 conv and apply filter afterwards to save on computational

cost

o Bottleneck layer

o Saves cost by around 10x

• Does shrinking channels hurt?

o Not significantly

Bill Zhang

8

18. Inception Network

• Previous activation → (1x1 conv → 5x5 conv), (1x1 conv → 3x3 conv), (1x1 conv), (max pool 3x3,

s=1 same → 1x1 conv) → channel concat

• A few additional side branches

o Takes some hidden layer and tries to make a prediction from there

o Helps ensure that features even in intermediate layers are not too bad

o Prevents overfitting

• Name inspired by a meme lol

o Actually cited by paper

19. Using Open Source Implementation

• Search resnets github on Google

• Click Clone or Download and copy URL

• Git clone URL

20. Transfer Learning

• Can download weights that someone else has already pre-trained

• Can use these as initial weights

• Change the softmax layer from previous implementation to work with your own custom classes

o Then, freeze all weights except softmax layer!

o Most frameworks can do this

o Could also save output of last frozen layer in disk to train softmax

▪ Faster computation

• If we have a larger labeled dataset

o Freeze fewer layers and train the rest

o Can change the non-frozen layers too

• If we have a lot of data

o Just use the weights as initialization and train entire network (with modified softmax)

21. Data Augmentation

• Used to improve performance of CV systems

• Common augmentation methods: transform but maintain label

o Mirroring: flip horizontally

o Random cropping: take random crops as new images

▪ May of may not work, but in practice works well

o Rotation, shearing, local warping also okay but used less

o Color shifting: add some (random) constant value to each RGB channel

▪ PCA color augmentation: keeps ‘overall tint’ of the picture the same

• Implementing distortions during training

o Use CPU thread to implement distortions on loaded pictures to create mini-batch

o Then, passed on to training

o Distortions and training can run in parallel

Bill Zhang

9

22. State of Computer Vision

• Data vs. hand-engineering

o Little data to lots of data spectrum

▪ Object detection → Image recognition → Speech recognition

o Simpler algorithms and less hand-engineering for problems with large datasets

o More hand-engineering (“hacks”) for problems with small datasets

o Two sources of knowledge

▪ Labeled data (x, y)

▪ Hand engineered features/network architecture/other components

• Heavier reliance on this because of lack of data due to complexity of

problem

• Transfer learning helps

• Tips for doing well on benchmarks/winning competitions

o Ensembling: train several networks independently and average their outputs

▪ Not weights!

▪ Slows down as you add more networks (and takes more memory)

▪ Hard to use in production

o Multi-crop at test time: run classifier on multiple versions of test images and average

results

▪ 10-crop method (center + 4 corners and mirrored versions) and average results

▪ Might help for production systems

▪ Also slows down, but does not take too much more memory

• Use open source code

o Use architectures of networks published in the literature

o Use open source implementations if possible

o Use pretrained models and fine-tune on your dataset

OBJECT DETECTION

22. Object Localization

• Problem types

o Image classification: algorithm looks at picture and outputs class

o Classification with localization: algorithm must also bound the object within image in

addition to giving output

o Detection: Deal with multiple objects and localize them all

• Can have network output 4 more numbers bx, by, bh, bw to parameterize bounding box of

object (center, height, and width)

o (0,0) at top left of image, (1,1) at bottom right

• Defining the target label y

o 1: pedestrian, 2: car, 3: motorcycle, 4: background

o Need to output bx, by, bh, bw, class label (1-4)

o y = [pc, bx, by, bh, bw, c1, c2, c3] where pc is the probability of there being an object

o If pc = 0, then rest of output is ‘don’t care’s

• Loss function

Bill Zhang

10

o L(y^, y) = sum of square error between y^ and y if y1 = 1

o L(y^, y) = only square error of y1 if y1 = 0

▪ Don’t care about remaining outputs

o Could use other loss (like likelihood loss)

23. Landmark Detection

• Could also just find landmarks on the image (points of interest)

• Conv net to output presence of face and locations of all landmarks

• Need labeled training set with annotated landmarks

• Pose prediction: could also annotate key positions on person

•

25. Object Detection

• Train ConvNet to identify cropped images to use in sliding windows detection

• Pick a window size and input into the ConvNet cropped images of the same size, sliding across

the image

• Repeat with slightly larger window

• And again

• Hope that if we do this, then the car will be detected by some window

• Huge disadvantage: computational cost

o Running so many cropped images independently through CNNs

26. Convolutional Implementation Sliding Windows

• Turning FC layer into convolutional layers

o Implement as 400 5x5 filters to get 1x1x400 instead of FC layer

Bill Zhang

11

o
• Convolution implementation of sliding windows

o If input image is larger than expected, then we can rerun the CNN on each corner of

image

o Or, we could just run the larger image through original network and get left with a

slightly larger output, where each value of output gives what you would get from

previous method

o Combines all FC computations into one computation

o
o Stride of 2 from max pool size

27. Bounding Box Predictions

• Sliding windows are more efficient, but bounding boxes not very accurate

• Ground truth might have non-square bounding boxes

• YOLO algorithm (you only look once)

o Place grid on top of image

o Apply image localization to each grid cells

o For each grid cell: y = [pc, bx, by, bh, bw, c1, c2, c3]

o Only grid cell containing midpoint contains the object

o Target output 3x3x8 for example (3x3 grid, 8d y vector)

• Precise bounding box outputs

• Multiple objects in grid cells will interfere with accuracy

• Very fast due to convolutional implementation

Bill Zhang

12

• Specify the bounding boxes

o Specified relative to grid cell size

▪ bx and by must be between 0 and 1

▪ bh and bw could be more than 1

28. Intersection Over Union

• Evaluating object localization

o Intersection over union (IoU)

▪ Literally take intersection of output and target bounding box over the union

▪ If IoU >= 0.5, should be okay

o More generally, IoU is a measure of the overlap between two bounding boxes

29. Non-max Suppression

• Could detect object more than once

• Looks at probabilities associated with each detection

o Discard all boxes with pc <= 0.6 (low probability boxes)

o Takes largest one first

o Suppress all rectangles with high overlap (IoU >= 0.5)

o Repeat with remaining rectangles

30. Anchor Boxes

• Deal with multiple objects in one grid cell

o Overlapping objects

• Predefine two (or more) different shapes (anchor boxes)

•
• Previously, each object in training image is assigned to grid cell that contains that object’s

midpoint

• With two anchor boxes, each object in training is assigned to grid cell that contains object’s

midpoint and anchor box for the grid cell with highest IoU

• Allows algorithm to specialize better to detect certain types of anchor box shapes

• Could use k-means algorithm to choose anchor box shapes

31. YOLO Algorithm

Bill Zhang

13

• Training

o
• Making predictions

• Output non-max suppressed outputs

o For each grid cell, get 2 predicted bounding boxes

o Get rid of low probability predictions

o For each class, use non-max suppression to generate final predictions

32. Region Proposal

• R-CNN (regions with CNNs)

o For sliding windows, only select a few windows

o Segmentation algorithm to figure out what could be objects

o Find maybe 2000 blobs

o Classify each region once at a time; output label and bounding boxes

o Still quite slow

• Fast R-CNN

o Propose regions (bottleneck step)

o Then, use convolution implementation of sliding windows to classify all the proposed

regions

• Faster R-CNN

o Use CNN to propose regions

FACE RECOGNITION

33. What is Face Recognition?

• Liveness detection in conjunction with face recognition

• Face verification vs. face recognition

o Verification

▪ Input image, name/ID

▪ Output whether the input image is that of the claimed person

o Recognition

▪ Has a database of K people

Bill Zhang

14

▪ Get an input image

▪ Output ID if the image is any of the K persons (or “not recognized”)

34. One-shot Learning

• Need to recognize image given just one example of person’s face

• Learning from one example to recognize the person again

• Retrain each time new person joins? Not feasible.

• Learn a “similarity” function

o d(img1, img2) = degree of difference between images

o If d <= tau (a threshold), then output “same”

o Otherwise, output “different”

• For recognition, do this for every face in database

• Adding new people to database does not require retraining

35. Siamese Network

• Feed pictures to same network to get output vector of n parameters

• Define d(x1, x2) = |f(x1)-f(x2)|2
2

• How to train?

o Parameters of NN define an encoding f(x(i))

o Learn parameters so that:

▪ If x(i), x(j) are the same person, |f(x(i))-f(x(j))|2 is small

▪ Otherwise, it should be large

36. Triplet Loss

• Want anchor image to be similar to positive images and different from negative image

o A, P, N

• Want: |f(A)-f(P)|2 <= |f(A)-f(N)|2

o |f(A)-f(P)|2 - |f(A)-f(N)|2 <= 0

o Could just output f = 0 to trivially solve this

o Or f = k for every image

• Modify objective:

o |f(A)-f(P)|2 - |f(A)-f(N)|2 + alpha <= 0

o Alpha is the margin

• Loss function

o Given 3 images A, P, N:

▪ L(A, P, N) = max(|f(A)-f(P)|2 - |f(A)-f(N)|2 + alpha, 0)

o Overall loss J = sum{i=1 to m}[L(A(i), P(i), N(i))]

o Training set: 10k pictures of 1k persons

▪ Need multiple pictures of the same person

• How to choose triplets?

o During training, if A, P, N are chosen randomly, d(A, P) + alpha <= d(A, N) is easily

satisfied

o Choose triplets that’re “hard” to train on

Bill Zhang

15

o Maybe choose d(A, P) approx. d(A, N)

• Use gradient descent to minimize J

o Will have effect of backpropagating

• Lots of pre-trained models online using very large data sets

37. Face Verification and Binary Classification

• Instead of triplet loss, input embeddings into logistic regression to output 1s and 0s

•
• Precompute for all images in database to save memory and computation time

• Train using supervised learning and pairs of images as inputs

NEURAL STYLE TRANSFER

38. What is it?

• Recreate image in style of another input image

o C = content image, S = style image, G = generated image

39. What are deep ConvNets learning?

• Pick a unit in layer 1; find the nine image patches that maximize the unit’s activation

• Repeat for other units

• Do the same thing for later layers

• Features get more complicated as we get deeper in network

40. Cost Function

• Given C and S generate G

• Minimize a loss J(G) using gradient descent

o J(G) = alpha*Jcontent(C, G) + beta*Jstyle(S, G)

• Find the generated G

o 1. Initialize G randomly

o 2. Use gradient descent to minimize J(G)

▪ G = G – partialG J(G)

41. Content Cost Function

Bill Zhang

16

• Use hidden layer l to compute content cost

• Usually choose a intermediate layer

o Too early on will make images too similar

o Too deep will make images too different

• Use pre-trained ConvNet (e.g. VGG network)

• If activations of C and G at layer l are similar, both images have similar content

• Jcontent (C, G) = ½*| a[l](C) – a[l](G) |2

42. Style Cost Function

• Say we are using layer l’s activation to measure “style”

• Define style as correlation between activations across channels

o Whenever a particular feature appears, other features may tend to appear with it

o Thus, using degree of correlation between channels will allow us to get certain types of

features occurring at the same time

• Style matrix

o Actually using unnormalized co-covariance, not correlation

o Calculate correlation matrix for both S and G

o Style cost is therefore difference between these two style matrices

o
• Better if we use from multiple layers!

o Sum up loss from every layer with some weight lambda[l]

FINAL REMARKS

43. 1D and 3D Generalization of Models

• We learned about 2D convolution with multiple channels

• Similar idea can be applied to 1D data

o Convolve with a 1D filter by sliding across data

o Usually use RNNs

• Same with 3D data

o Just use a 3D filter and slide across everything

