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CNNs by Andrew Ng NOTES 

Link: https://www.youtube.com/playlist?list=PLBAGcD3siRDjBU8sKRk0zX9pMz9qeVxud  

GENERAL CNNS 

1. What is Computer Vision? 

• Computer vision problems 

o Image classification 

o Object detection 

o Neural style transfer 

• Large input images 

o If we use standard fully connected matrix, scales horribly 

o Hard to not overfit, hard to train 

2. Edge Detection Example 

• Standard CNN structure 

o Edges to parts of objects to faces 

• First, maybe detect horizontal and vertical edges 

• How to detect? 

o Start with 6x6 image 

o Construct 3x3 matrix (filter) 

▪ [[1 0 -1], [1 0 -1], [1 0 -1]] 

o Convolve image with filter 

▪ Take matrix and paste at top left edge 

▪ Take element-wise product 

▪ Keep sliding filter across image 

o Results in a 4x4 matrix 

o Python: conv-forward 

o TF: tf.nn.conv2d 

o Keras: Conv2D 

• Large values mean edge 

3. More Edge Detection 

• What if light and dark parts are flipped? 

o Can take abs val if it doesn’t matter 

• Horizontal filter 

o [[1 1 1], [0 0 0], [-1 -1 -1]] 

• Possible other filters 

o [[1 0 -1], [2 0 -2], [1 0 -1]]: Sobel filter 

o [[3 0 -3], [10 0 -10], [3 0 -3]]: Scharr filter 

o Could also learn the values by treating them like weights 

▪ Neural networks can learn higher-level features 

4. Padding 

https://www.youtube.com/playlist?list=PLBAGcD3siRDjBU8sKRk0zX9pMz9qeVxud
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• Convolution usually ends up with smaller output matrices 

o Image shrinks on every layer 

• (nxn) * (fxf) → (n-f+1 x n-f+1) 

• Pixels on corners/edges are used a lot less in convolution 

o Throwing away lots of information 

• Pad the image with 1 pixel border of 0s 

o (n+2p-f+1 x n+2p-f+1) 

• Can pad with wider borders too 

• Valid and Same convolutions 

o Valid: no padding 

▪ nxn * fxf → n-f+1 x n-f+1 

o Same: pad so output size is the same as input size 

▪ 2p = f-1 

▪ f usually odd 

5. Strided Convolution 

• Convolve with a stride of 2 

o Instead of stepping over 1 step, step 2 steps as filter is slided 

o 7x7 * 3x3 = 3x3 

• nxn * fxf with padding p and stride s = (n+2p-f)/s+1 x (n+2p-f)/s+1 

• What if fraction not an integer? 

o Take floor 

• If stride causes part of filter to go out of image, floor applies 

• Cross-correlation vs. convolution 

o Some conventions flip the filter on the horizontal and vertical axes 

o Then, convolve with the flipped matrix 

o By convention, we do not flip 

▪ This is technically cross-correlation, but is called convolution 

o The mirroring operation makes the convolution op. associative 

6. Convolutions Over Volume 

• Convolutions on RGB images (nxnx3 volumes) 

o Height x width x channels 

o Filter is 3x3x3 

▪ Results in 4x4 matrix 

• Again, take element-wise product, just now across multiple layers 

• If we only want to detect edges on one channel, just make other channels have 0 matrices 

• What if we want to use multiple filters at the same time? 

o Have more filters (e.g. 2); each outputs a 4x4 output 

o Stack outputs together into 4x4x2 output volume 

• Summary: (n x n x nc) * (f x f x nc) = n-f+1 x n-f+1 x nc’ 

o nc and nc’ are called depth or channels 

• Can detect large number of features with this technique 
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7. One Layer of CNN 

• Add a bias to each output matrix of the filters and apply nonlinearity to get final output 

o Nonlinearities like Relu 

• Stack up the final output matrices; result in 1 layer of CNN 

• Analogy to 1 layer forward propogation 

o z1 = W1*a0+b1 

o a1 = g(z1) 

o Input image = a0, each filter = W1, bias = b1, nonlinearity  = g 

• 10 filters that are 3x3x3 in one layer of a neural network: how many parameters does that layer 

have? 

o 27 parameters in each filter 

o +1 for bias gives 28 parameters 

o 10 of these makes 28*10 = 280 parameters 

o Number of parameters fixed with changing input size 

▪ Less prone to overfitting 

• Summary of notation; If layer l is a convolution layer: 

o f[l] = filter size 

o p[l] = padding 

o s[l] = stride 

o nc
[l] = number of filters 

o Each filter is: f[l] x f[l] x nc
[l-1] 

o Activations: a[l] = nH
[l] x nW

[l] x nc
[l], A[l] = m x nH

[l] x nW
[l] x nc

[l] 

o Weights: f[l] x f[l] x nc
[l-1] x nc

[l] 

o Bias: 1 x 1 x 1 x nc
[l] 

o Input: nH
[l-1] x nW

[l-1] x nc
[l-1] 

o Output: nH
[l] x nW

[l] x nc
[l] 

o nH
[l] = floor((nH

[l-1] + 2p[l] – f[l])/s[l] + 1); same for width 

8. Simple Convolutional Network Example 

• Example ConvNet 

o Flatten last activation layer into 1D vector and feed to logistic/softmax unit to get final 

output 

o  
• Types of layer in a CNN 
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o Convolution (Conv) 

o Pooling (Pool) 

o Fully connected (FC) 

9. Pooling Layers 

• Max pooling 

o 4x4 → 2x2 by taking max of each quadrant 

o Hyperparameters: f = 2, s = 2 

o Indicates presence of feature within a quadrant 

o No parameters! 

• Input 5x5, f = 3, s = 1 → Output 3x3 

• If 3D, same as conv layers 

o Perform max pooling on each layer independently 

• Another type: average pooling 

o Take mean instead of max 

o Sometimes, used in deep CNN layers to collapse into 1x1xN 

• Could use padding hyperparameters, but almost never used! 

10. CNN Example 

• Some conventions have conv and pool in layer 

• Some have them as separate layers 

• We will use conv and pool in one layer 

•  

11. Why Convolutions? 

• Parameter sharing and sparsity of connections 

• Number of parameters in CNN is much fewer than normal FC layers 

• Parameter sharing: A feature detector that’s useful in one part of the image is probably useful in 

another part of the image 

• Sparsity of connections: In each layer, each output value depends only on a small number of 

inputs 

• Cost function 
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o  

12. Why look at case studies? 

• Classic networks: LeNet-5, AlexNet, VGG 

• ResNet (152 layer) 

• Inception 

13. Classic Networks 

• LeNet-5 (1998) 

o  
• AlexNet (2012): made deep learning seem plausible 

o  
• VGG-16 (2015): simple but large, relatively uniform 
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o  

14. ResNet 

• Allow very deep CNNs to be trained 

• Residual block 

o Short-cut/skip before ReLU part 

o  
• Stack many residual blocks 

o In practice, training plain network that’s is very deep causes training error to increase 

o For ResNets, performance keeps on going down as layers increase 

▪ Helps with vanishing/exploding gradients problem 

15. Why ResNets Work 

• X → Big NN → a[l] 

• Add more layers to above with residual 

• Identity function is easy for residual block to learn! 

• Adding more layers does not hurt NN’s ability to learn 
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•  
• However, we still have potential to improve performance 

• Have to use “same” convolutions to do this technique 

o Or, add a matrix to convert dimensions 

16. Network In Network 

• 1x1 filter convolutions just scalar multiplies the input with one channel 

• If multiple channels, though, then it makes more sense since we end up with a single number for 

each position with same height and width; also applies a ReLU nonlinearity 

• Kind of like having a FC network for each height, width position 

• Can shrink number of channels without changing height and width 

o Or, maintain number of channels but add nonlinearity 

17. Inception Network Motivation 

• Want to try multiple filter dimensions or pooling with padding 

o Stack up outputs from each dimension 

•  
• Instead of having to pick filter size/layer type, we can just let network pick 

o However, this adds computational cost 

• Can first reduce channels using 1x1 conv and apply filter afterwards to save on computational 

cost 

o Bottleneck layer 

o Saves cost by around 10x 

• Does shrinking channels hurt? 

o Not significantly 
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18. Inception Network 

• Previous activation → (1x1 conv → 5x5 conv), (1x1 conv → 3x3 conv), (1x1 conv), (max pool 3x3, 

s=1 same → 1x1 conv) → channel concat 

• A few additional side branches 

o Takes some hidden layer and tries to make a prediction from there 

o Helps ensure that features even in intermediate layers are not too bad 

o Prevents overfitting 

• Name inspired by a meme lol 

o Actually cited by paper 

19. Using Open Source Implementation 

• Search resnets github on Google 

• Click Clone or Download and copy URL 

• Git clone URL 

20. Transfer Learning 

• Can download weights that someone else has already pre-trained 

• Can use these as initial weights 

• Change the softmax layer from previous implementation to work with your own custom classes 

o Then, freeze all weights except softmax layer! 

o Most frameworks can do this 

o Could also save output of last frozen layer in disk to train softmax 

▪ Faster computation 

• If we have a larger labeled dataset 

o Freeze fewer layers and train the rest 

o Can change the non-frozen layers too 

• If we have a lot of data 

o Just use the weights as initialization and train entire network (with modified softmax) 

21. Data Augmentation 

• Used to improve performance of CV systems 

• Common augmentation methods: transform but maintain label 

o Mirroring: flip horizontally 

o Random cropping: take random crops as new images 

▪ May of may not work, but in practice works well 

o Rotation, shearing, local warping also okay but used less 

o Color shifting: add some (random) constant value to each RGB channel 

▪ PCA color augmentation: keeps ‘overall tint’ of the picture the same 

• Implementing distortions during training 

o Use CPU thread to implement distortions on loaded pictures to create mini-batch 

o Then, passed on to training 

o Distortions and training can run in parallel 
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22. State of Computer Vision 

• Data vs. hand-engineering 

o Little data to lots of data spectrum 

▪ Object detection → Image recognition → Speech recognition 

o Simpler algorithms and less hand-engineering for problems with large datasets 

o More hand-engineering (“hacks”) for problems with small datasets 

o Two sources of knowledge 

▪ Labeled data (x, y) 

▪ Hand engineered features/network architecture/other components 

• Heavier reliance on this because of lack of data due to complexity of 

problem 

• Transfer learning helps 

• Tips for doing well on benchmarks/winning competitions 

o Ensembling: train several networks independently and average their outputs 

▪ Not weights! 

▪ Slows down as you add more networks (and takes more memory) 

▪ Hard to use in production 

o Multi-crop at test time: run classifier on multiple versions of test images and average 

results 

▪ 10-crop method (center + 4 corners and mirrored versions) and average results 

▪ Might help for production systems 

▪ Also slows down, but does not take too much more memory 

• Use open source code 

o Use architectures of networks published in the literature 

o Use open source implementations if possible 

o Use pretrained models and fine-tune on your dataset 

OBJECT DETECTION 

22. Object Localization 

• Problem types 

o Image classification: algorithm looks at picture and outputs class 

o Classification with localization: algorithm must also bound the object within image in 

addition to giving output 

o Detection: Deal with multiple objects and localize them all 

• Can have network output 4 more numbers bx, by, bh, bw to parameterize bounding box of 

object (center, height, and width) 

o (0,0) at top left of image, (1,1) at bottom right 

• Defining the target label y 

o 1: pedestrian, 2: car, 3: motorcycle, 4: background 

o Need to output bx, by, bh, bw, class label (1-4) 

o y = [pc, bx, by, bh, bw, c1, c2, c3] where pc is the probability of there being an object 

o If pc = 0, then rest of output is ‘don’t care’s 

• Loss function 
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o L(y^, y) = sum of square error between y^ and y if y1 = 1 

o L(y^, y) = only square error of y1 if y1 = 0 

▪ Don’t care about remaining outputs 

o Could use other loss (like likelihood loss) 

23. Landmark Detection 

• Could also just find landmarks on the image (points of interest) 

• Conv net to output presence of face and locations of all landmarks 

• Need labeled training set with annotated landmarks 

• Pose prediction: could also annotate key positions on person  

•  

25. Object Detection 

• Train ConvNet to identify cropped images to use in sliding windows detection 

• Pick a window size and input into the ConvNet cropped images of the same size, sliding across 

the image 

• Repeat with slightly larger window 

• And again 

• Hope that if we do this, then the car will be detected by some window 

• Huge disadvantage: computational cost 

o Running so many cropped images independently through CNNs 

26. Convolutional Implementation Sliding Windows 

• Turning FC layer into convolutional layers 

o Implement as 400 5x5 filters to get 1x1x400 instead of FC layer 
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o  
• Convolution implementation of sliding windows 

o If input image is larger than expected, then we can rerun the CNN on each corner of 

image 

o Or, we could just run the larger image through original network and get left with a 

slightly larger output, where each value of output gives what you would get from 

previous method 

o Combines all FC computations into one computation 

o  
o Stride of 2 from max pool size 

27. Bounding Box Predictions 

• Sliding windows are more efficient, but bounding boxes not very accurate 

• Ground truth might have non-square bounding boxes 

• YOLO algorithm (you only look once) 

o Place grid on top of image 

o Apply image localization to each grid cells 

o For each grid cell: y = [pc, bx, by, bh, bw, c1, c2, c3] 

o Only grid cell containing midpoint contains the object 

o Target output 3x3x8 for example (3x3 grid, 8d y vector) 

• Precise bounding box outputs 

• Multiple objects in grid cells will interfere with accuracy 

• Very fast due to convolutional implementation 
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• Specify the bounding boxes 

o Specified relative to grid cell size 

▪ bx and by must be between 0 and 1 

▪ bh and bw could be more than 1 

28. Intersection Over Union 

• Evaluating object localization 

o Intersection over union (IoU) 

▪ Literally take intersection of output and target bounding box over the union 

▪ If IoU >= 0.5, should be okay 

o More generally, IoU is a measure of the overlap between two bounding boxes 

29. Non-max Suppression 

• Could detect object more than once 

• Looks at probabilities associated with each detection 

o Discard all boxes with pc <= 0.6 (low probability boxes) 

o Takes largest one first 

o Suppress all rectangles with high overlap (IoU >= 0.5) 

o Repeat with remaining rectangles 

30. Anchor Boxes 

• Deal with multiple objects in one grid cell 

o Overlapping objects 

• Predefine two (or more) different shapes (anchor boxes) 

•  
• Previously, each object in training image is assigned to grid cell that contains that object’s 

midpoint 

• With two anchor boxes, each object in training is assigned to grid cell that contains object’s 

midpoint and anchor box for the grid cell with highest IoU 

• Allows algorithm to specialize better to detect certain types of anchor box shapes 

• Could use k-means algorithm to choose anchor box shapes 

31. YOLO Algorithm 
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• Training 

o  
• Making predictions 

• Output non-max suppressed outputs 

o For each grid cell, get 2 predicted bounding boxes 

o Get rid of low probability predictions 

o For each class, use non-max suppression to generate final predictions 

32. Region Proposal 

• R-CNN (regions with CNNs) 

o For sliding windows, only select a few windows 

o Segmentation algorithm to figure out what could be objects 

o Find maybe 2000 blobs 

o Classify each region once at a time; output label and bounding boxes 

o Still quite slow 

• Fast R-CNN 

o Propose regions (bottleneck step) 

o Then, use convolution implementation of sliding windows to classify all the proposed 

regions 

• Faster R-CNN 

o Use CNN to propose regions 

FACE RECOGNITION 

33. What is Face Recognition? 

• Liveness detection in conjunction with face recognition 

• Face verification vs. face recognition 

o Verification 

▪ Input image, name/ID 

▪ Output whether the input image is that of the claimed person 

o Recognition 

▪ Has a database of K people 
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▪ Get an input image 

▪ Output ID if the image is any of the K persons (or “not recognized”) 

34. One-shot Learning 

• Need to recognize image given just one example of person’s face 

• Learning from one example to recognize the person again 

• Retrain each time new person joins? Not feasible. 

• Learn a “similarity” function 

o d(img1, img2) = degree of difference between images 

o If d <= tau (a threshold), then output “same” 

o Otherwise, output “different” 

• For recognition, do this for every face in database 

• Adding new people to database does not require retraining 

35. Siamese Network 

• Feed pictures to same network to get output vector of n parameters 

• Define d(x1, x2) = |f(x1)-f(x2)|2
2 

• How to train?  

o Parameters of NN define an encoding f(x(i)) 

o Learn parameters so that: 

▪ If x(i), x(j) are the same person, |f(x(i))-f(x(j))|2 is small 

▪ Otherwise, it should be large 

36. Triplet Loss 

• Want anchor image to be similar to positive images and different from negative image 

o A, P, N 

• Want: |f(A)-f(P)|2 <= |f(A)-f(N)|2 

o |f(A)-f(P)|2 - |f(A)-f(N)|2 <= 0 

o Could just output f = 0 to trivially solve this 

o Or f = k for every image 

• Modify objective: 

o |f(A)-f(P)|2 - |f(A)-f(N)|2  + alpha <= 0 

o Alpha is the margin 

• Loss function 

o Given 3 images A, P, N: 

▪ L(A, P, N) = max(|f(A)-f(P)|2 - |f(A)-f(N)|2  + alpha, 0) 

o Overall loss J = sum{i=1 to m}[L(A(i), P(i), N(i))] 

o Training set: 10k pictures of 1k persons 

▪ Need multiple pictures of the same person 

• How to choose triplets? 

o During training, if A, P, N are chosen randomly, d(A, P) + alpha <= d(A, N) is easily 

satisfied 

o Choose triplets that’re “hard” to train on 
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o Maybe choose d(A, P) approx. d(A, N) 

• Use gradient descent to minimize J 

o Will have effect of backpropagating 

• Lots of pre-trained models online using very large data sets 

37. Face Verification and Binary Classification 

• Instead of triplet loss, input embeddings into logistic regression to output 1s and 0s 

•  
• Precompute for all images in database to save memory and computation time 

• Train using supervised learning and pairs of images as inputs 

NEURAL STYLE TRANSFER 

38. What is it? 

• Recreate image in style of another input image 

o C = content image, S = style image, G = generated image 

39. What are deep ConvNets learning? 

• Pick a unit in layer 1; find the nine image patches that maximize the unit’s activation 

• Repeat for other units 

• Do the same thing for later layers 

• Features get more complicated as we get deeper in network 

40. Cost Function 

• Given C and S generate G 

• Minimize a loss J(G) using gradient descent 

o J(G) = alpha*Jcontent(C, G) + beta*Jstyle(S, G) 

• Find the generated G 

o 1. Initialize G randomly 

o 2. Use gradient descent to minimize J(G) 

▪ G = G – partialG J(G) 

41. Content Cost Function 
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• Use hidden layer l to compute content cost 

• Usually choose a intermediate layer 

o Too early on will make images too similar 

o Too deep will make images too different 

• Use pre-trained ConvNet (e.g. VGG network) 

• If activations of C and G at layer l are similar, both images have similar content 

• Jcontent (C, G) = ½*| a[l](C) – a[l](G) |2 

42. Style Cost Function 

• Say we are using layer l’s activation to measure “style” 

• Define style as correlation between activations across channels 

o Whenever a particular feature appears, other features may tend to appear with it 

o Thus, using degree of correlation between channels will allow us to get certain types of 

features occurring at the same time 

• Style matrix 

o Actually using unnormalized co-covariance, not correlation 

o Calculate correlation matrix for both S and G 

o Style cost is therefore difference between these two style matrices 

o  
• Better if we use from multiple layers! 

o Sum up loss from every layer with some weight lambda[l] 

FINAL REMARKS 

43. 1D and 3D Generalization of Models 

• We learned about 2D convolution with multiple channels 

• Similar idea can be applied to 1D data 

o Convolve with a 1D filter by sliding across data 

o Usually use RNNs 

• Same with 3D data 

o Just use a 3D filter and slide across everything 


