CNNs by Andrew Ng NOTES

Link: https://www.youtube.com/playlist?list=PLBAGcD3siRDjBU8sKRk0zX9pMz9qeVxud

GENERAL CNNS

1. What is Computer Vision?

- Computer vision problems
 - o Image classification
 - Object detection
 - Neural style transfer
- Large input images
 - o If we use standard fully connected matrix, scales horribly
 - Hard to not overfit, hard to train
- 2. Edge Detection Example
 - Standard CNN structure
 - Edges to parts of objects to faces
 - First, maybe detect horizontal and vertical edges
 - How to detect?
 - Start with 6x6 image
 - Construct 3x3 matrix (filter)
 - [[10-1], [10-1], [10-1]]
 - \circ Convolve image with filter
 - Take matrix and paste at top left edge
 - Take element-wise product
 - Keep sliding filter across image
 - Results in a 4x4 matrix
 - Python: conv-forward
 - TF: tf.nn.conv2d
 - Keras: Conv2D
 - Large values mean edge
- 3. More Edge Detection
 - What if light and dark parts are flipped?
 - Can take abs val if it doesn't matter
 - Horizontal filter
 - [[1 1 1], [0 0 0], [-1 -1 -1]]
 - Possible other filters
 - o [[10-1], [20-2], [10-1]]: Sobel filter
 - o [[3 0 -3], [10 0 -10], [3 0 -3]]: Scharr filter
 - o Could also learn the values by treating them like weights
 - Neural networks can learn higher-level features
- 4. Padding

- Convolution usually ends up with smaller output matrices
 - Image shrinks on every layer
- $(nxn) * (fxf) \rightarrow (n-f+1 \times n-f+1)$
- Pixels on corners/edges are used a lot less in convolution
 - Throwing away lots of information
- Pad the image with 1 pixel border of 0s
 - (n+2p-f+1 x n+2p-f+1)
- Can pad with wider borders too
- Valid and Same convolutions
 - Valid: no padding
 - nxn * fxf \rightarrow n-f+1 x n-f+1
 - \circ $\;$ Same: pad so output size is the same as input size
 - 2p = f-1
 - f usually odd
- 5. Strided Convolution

•

- Convolve with a stride of 2
 - Instead of stepping over 1 step, step 2 steps as filter is slided
 - 7x7 * 3x3 = 3x3
 - nxn * fxf with padding p and stride s = (n+2p-f)/s+1 x (n+2p-f)/s+1
- What if fraction not an integer?
 - o Take floor
- If stride causes part of filter to go out of image, floor applies
- Cross-correlation vs. convolution
 - Some conventions flip the filter on the horizontal and vertical axes
 - Then, convolve with the flipped matrix
 - By convention, we do not flip
 - This is technically cross-correlation, but is called convolution
 - o The mirroring operation makes the convolution op. associative
- 6. Convolutions Over Volume
 - Convolutions on RGB images (nxnx3 volumes)
 - Height x width x channels
 - Filter is 3x3x3
 - Results in 4x4 matrix
 - Again, take element-wise product, just now across multiple layers
 - If we only want to detect edges on one channel, just make other channels have 0 matrices
 - What if we want to use multiple filters at the same time?
 - Have more filters (e.g. 2); each outputs a 4x4 output
 - Stack outputs together into 4x4x2 output volume
 - Summary: (n x n x n_c) * (f x f x n_c) = n-f+1 x n-f+1 x n_c'
 - \circ n_c and n_c' are called depth or channels
 - Can detect large number of features with this technique

- 7. One Layer of CNN
 - Add a bias to each output matrix of the filters and apply nonlinearity to get final output
 - o Nonlinearities like Relu
 - Stack up the final output matrices; result in 1 layer of CNN
 - Analogy to 1 layer forward propogation
 - o z1 = W1*a0+b1
 - a1 = g(z1)
 - Input image = a0, each filter = W1, bias = b1, nonlinearity = g
 - 10 filters that are 3x3x3 in one layer of a neural network: how many parameters does that layer have?
 - 27 parameters in each filter
 - +1 for bias gives 28 parameters
 - 10 of these makes 28*10 = 280 parameters
 - Number of parameters fixed with changing input size
 - Less prone to overfitting
 - Summary of notation; If layer l is a convolution layer:
 - \circ f^[I] = filter size
 - \circ p^[I] = padding
 - \circ s^[I] = stride
 - \circ $n_c^{[l]}$ = number of filters
 - \circ Each filter is: f^[I] x f^[I] x n_c^[I-1]
 - Activations: $a^{[1]} = n_{H}^{[1]} x n_{W}^{[1]} x n_{c}^{[1]}$, $A^{[1]} = m x n_{H}^{[1]} x n_{W}^{[1]} x n_{c}^{[1]}$
 - Weights: f^[1] x f^[1] x n_c^[1-1] x n_c^[1]
 - Bias: $1 \times 1 \times 1 \times n_c^{[l]}$
 - ο Input: n_H^[I-1] x n_W^[I-1] x n_c^[I-1]
 - $\circ \quad \text{Output: } n_{H}{}^{[l]} \ x \ n_{W}{}^{[l]} \ x \ n_{c}{}^{[l]}$
 - o $n_{H}^{[l]} = floor((n_{H}^{[l-1]} + 2p^{[l]} f^{[l]})/s^{[l]} + 1)$; same for width
- 8. Simple Convolutional Network Example
 - Example ConvNet
 - Flatten last activation layer into 1D vector and feed to logistic/softmax unit to get final output

• Types of layer in a CNN

0

- Convolution (Conv)
- Pooling (Pool)
- Fully connected (FC)
- 9. Pooling Layers
 - Max pooling
 - $4x4 \rightarrow 2x2$ by taking max of each quadrant
 - Hyperparameters: f = 2, s = 2
 - Indicates presence of feature within a quadrant
 - No parameters!
 - Input 5x5, f = 3, $s = 1 \rightarrow Output 3x3$
 - If 3D, same as conv layers
 - Perform max pooling on each layer independently
 - Another type: average pooling
 - o Take mean instead of max
 - Sometimes, used in deep CNN layers to collapse into 1x1xN
 - Could use padding hyperparameters, but almost never used!

10. CNN Example

- Some conventions have conv and pool in layer
- Some have them as separate layers
- We will use conv and pool in one layer

11. Why Convolutions?

- Parameter sharing and sparsity of connections
- Number of parameters in CNN is much fewer than normal FC layers
- Parameter sharing: A feature detector that's useful in one part of the image is probably useful in another part of the image
- Sparsity of connections: In each layer, each output value depends only on a small number of inputs
- Cost function

Cost
$$J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Use gradient descent to optimize parameters to reduce J

12. Why look at case studies?

0

- Classic networks: LeNet-5, AlexNet, VGG
- ResNet (152 layer)
- Inception

13. Classic Networks

• LeNet-5 (1998)

0

0

• AlexNet (2012): made deep learning seem plausible

• VGG-16 (2015): simple but large, relatively uniform

14. ResNet

- Allow very deep CNNs to be trained
- Residual block
 - Short-cut/skip before ReLU part

- Stack many residual blocks
 - o In practice, training plain network that's is very deep causes training error to increase
 - For ResNets, performance keeps on going down as layers increase
 - Helps with vanishing/exploding gradients problem
- 15. Why ResNets Work

0

- $X \rightarrow Big NN \rightarrow a^{[1]}$
- Add more layers to above with residual
- Identity function is easy for residual block to learn!
- Adding more layers does not hurt NN's ability to learn

Why do residual networks work?

- •
- However, we still have potential to improve performance
- Have to use "same" convolutions to do this technique
 - Or, add a matrix to convert dimensions

16. Network In Network

- 1x1 filter convolutions just scalar multiplies the input with one channel
- If multiple channels, though, then it makes more sense since we end up with a single number for each position with same height and width; also applies a ReLU nonlinearity
- Kind of like having a FC network for each height, width position
- Can shrink number of channels without changing height and width
 - Or, maintain number of channels but add nonlinearity

17. Inception Network Motivation

- Want to try multiple filter dimensions or pooling with padding
 - Stack up outputs from each dimension

Motivation for inception network

- •
- Instead of having to pick filter size/layer type, we can just let network pick
 - However, this adds computational cost
- Can first reduce channels using 1x1 conv and apply filter afterwards to save on computational cost
 - Bottleneck layer
 - Saves cost by around 10x
- Does shrinking channels hurt?
 - Not significantly

- 18. Inception Network
 - Previous activation → (1x1 conv → 5x5 conv), (1x1 conv → 3x3 conv), (1x1 conv), (max pool 3x3, s=1 same → 1x1 conv) → channel concat
 - A few additional side branches
 - Takes some hidden layer and tries to make a prediction from there
 - o Helps ensure that features even in intermediate layers are not too bad
 - Prevents overfitting
 - Name inspired by a meme lol
 - o Actually cited by paper

19. Using Open Source Implementation

- Search resnets github on Google
- Click Clone or Download and copy URL
- Git clone URL

20. Transfer Learning

- Can download weights that someone else has already pre-trained
- Can use these as initial weights
- Change the softmax layer from previous implementation to work with your own custom classes
 - Then, freeze all weights except softmax layer!
 - Most frameworks can do this
 - Could also save output of last frozen layer in disk to train softmax
 - Faster computation
- If we have a larger labeled dataset
 - Freeze fewer layers and train the rest
 - Can change the non-frozen layers too
- If we have a lot of data
 - Just use the weights as initialization and train entire network (with modified softmax)
- 21. Data Augmentation
 - Used to improve performance of CV systems
 - Common augmentation methods: transform but maintain label
 - Mirroring: flip horizontally
 - Random cropping: take random crops as new images
 - May of may not work, but in practice works well
 - Rotation, shearing, local warping also okay but used less
 - o Color shifting: add some (random) constant value to each RGB channel
 - PCA color augmentation: keeps 'overall tint' of the picture the same
 - Implementing distortions during training
 - Use CPU thread to implement distortions on loaded pictures to create mini-batch
 - Then, passed on to training
 - Distortions and training can run in parallel

- 22. State of Computer Vision
 - Data vs. hand-engineering
 - Little data to lots of data spectrum
 - Object detection \rightarrow Image recognition \rightarrow Speech recognition
 - Simpler algorithms and less hand-engineering for problems with large datasets
 - More hand-engineering ("hacks") for problems with small datasets
 - Two sources of knowledge
 - Labeled data (x, y)
 - Hand engineered features/network architecture/other components
 - Heavier reliance on this because of lack of data due to complexity of problem
 - Transfer learning helps
 - Tips for doing well on benchmarks/winning competitions
 - Ensembling: train several networks independently and average their outputs
 - Not weights!
 - Slows down as you add more networks (and takes more memory)
 - Hard to use in production
 - Multi-crop at test time: run classifier on multiple versions of test images and average results
 - 10-crop method (center + 4 corners and mirrored versions) and average results
 - Might help for production systems
 - Also slows down, but does not take too much more memory
 - Use open source code
 - Use architectures of networks published in the literature
 - Use open source implementations if possible
 - Use pretrained models and fine-tune on your dataset

OBJECT DETECTION

22. Object Localization

- Problem types
 - o Image classification: algorithm looks at picture and outputs class
 - Classification with localization: algorithm must also bound the object within image in addition to giving output
 - Detection: Deal with multiple objects and localize them all
- Can have network output 4 more numbers bx, by, bh, bw to parameterize bounding box of object (center, height, and width)
 - (0,0) at top left of image, (1,1) at bottom right
- Defining the target label y
 - o 1: pedestrian, 2: car, 3: motorcycle, 4: background
 - Need to output bx, by, bh, bw, class label (1-4)
 - \circ y = [p_c, b_x, b_y, b_h, b_w, c₁, c₂, c₃] where p_c is the probability of there being an object
 - If $p_c = 0$, then rest of output is 'don't care's
- Loss function

- $L(y^{\prime}, y) = sum of square error between y^{\prime} and y if y_1 = 1$
- $L(y^{, y)} = only square error of y_1 if y_1 = 0$
 - Don't care about remaining outputs
- Could use other loss (like likelihood loss)

23. Landmark Detection

- Could also just find landmarks on the image (points of interest)
- Conv net to output presence of face and locations of all landmarks
- Need labeled training set with annotated landmarks
- Pose prediction: could also annotate key positions on person

25. Object Detection

- Train ConvNet to identify cropped images to use in sliding windows detection
- Pick a window size and input into the ConvNet cropped images of the same size, sliding across the image
- Repeat with slightly larger window
- And again
- Hope that if we do this, then the car will be detected by some window
- Huge disadvantage: computational cost
 - Running so many cropped images independently through CNNs

26. Convolutional Implementation Sliding Windows

- Turning FC layer into convolutional layers
 - Implement as 400 5x5 filters to get 1x1x400 instead of FC layer

Turning FC layer into convolutional layers

0

0

- Convolution implementation of sliding windows
 - If input image is larger than expected, then we can rerun the CNN on each corner of 0 image
 - Or, we could just run the larger image through original network and get left with a 0 slightly larger output, where each value of output gives what you would get from previous method

0

27. Bounding Box Predictions

- Sliding windows are more efficient, but bounding boxes not very accurate •
- Ground truth might have non-square bounding boxes •
- YOLO algorithm (you only look once) •
 - Place grid on top of image
 - Apply image localization to each grid cells
 - For each grid cell: $y = [p_c, b_x, b_y, b_h, b_w, c_1, c_2, c_3]$
 - Only grid cell containing midpoint contains the object
 - Target output 3x3x8 for example (3x3 grid, 8d y vector)
- Precise bounding box outputs
- Multiple objects in grid cells will interfere with accuracy
- Very fast due to convolutional implementation

- Specify the bounding boxes
 - Specified relative to grid cell size
 - b_x and b_y must be between 0 and 1
 - b_h and b_w could be more than 1
- 28. Intersection Over Union
 - Evaluating object localization
 - Intersection over union (IoU)
 - Literally take intersection of output and target bounding box over the union
 - If IoU >= 0.5, should be okay
 - More generally, IoU is a measure of the overlap between two bounding boxes
- 29. Non-max Suppression
 - Could detect object more than once
 - Looks at probabilities associated with each detection
 - Discard all boxes with $p_c \le 0.6$ (low probability boxes)
 - Takes largest one first
 - Suppress all rectangles with high overlap (IoU >= 0.5)
 - Repeat with remaining rectangles
- 30. Anchor Boxes
 - Deal with multiple objects in one grid cell
 - Overlapping objects
 - Predefine two (or more) different shapes (anchor boxes)
 - **Overlapping objects:**

- •
- Previously, each object in training image is assigned to grid cell that contains that object's midpoint
- With two anchor boxes, each object in training is assigned to grid cell that contains object's midpoint and anchor box for the grid cell with highest IoU
- Allows algorithm to specialize better to detect certain types of anchor box shapes
- Could use k-means algorithm to choose anchor box shapes

31. YOLO Algorithm

Training

Making predictions

0

- Output non-max suppressed outputs
 - For each grid cell, get 2 predicted bounding boxes
 - o Get rid of low probability predictions
 - o For each class, use non-max suppression to generate final predictions
- 32. Region Proposal
 - R-CNN (regions with CNNs)
 - For sliding windows, only select a few windows
 - o Segmentation algorithm to figure out what could be objects
 - Find maybe 2000 blobs
 - Classify each region once at a time; output label and bounding boxes
 - Still quite slow
 - Fast R-CNN
 - Propose regions (bottleneck step)
 - Then, use convolution implementation of sliding windows to classify all the proposed regions
 - Faster R-CNN
 - Use CNN to propose regions

FACE RECOGNITION

33. What is Face Recognition?

- Liveness detection in conjunction with face recognition
- Face verification vs. face recognition
 - Verification
 - Input image, name/ID
 - Output whether the input image is that of the claimed person
 - o Recognition
 - Has a database of K people

- Get an input image
- Output ID if the image is any of the K persons (or "not recognized")

34. One-shot Learning

- Need to recognize image given just one example of person's face
- Learning from one example to recognize the person again
- Retrain each time new person joins? Not feasible.
- Learn a "similarity" function
 - d(img1, img2) = degree of difference between images
 - If d <= tau (a threshold), then output "same"
 - Otherwise, output "different"
- For recognition, do this for every face in database
- Adding new people to database does not require retraining

35. Siamese Network

- Feed pictures to same network to get output vector of n parameters
- Define $d(x1, x2) = |f(x1)-f(x2)|_2^2$
- How to train?
 - Parameters of NN define an encoding $f(x^{(i)})$
 - Learn parameters so that:
 - If x⁽ⁱ⁾, x^(j) are the same person, |f(x⁽ⁱ⁾)-f(x^(j))|² is small
 - Otherwise, it should be large

36. Triplet Loss

- Want anchor image to be similar to positive images and different from negative image
 - o A, P, N
- Want: $|f(A)-f(P)|^2 \le |f(A)-f(N)|^2$
 - \circ $|f(A)-f(P)|^2 |f(A)-f(N)|^2 <= 0$
 - Could just output f = 0 to trivially solve this
 - Or f = k for every image
- Modify objective:
 - \circ |f(A)-f(P)|² |f(A)-f(N)|² + alpha <= 0
 - Alpha is the margin
- Loss function
 - Given 3 images A, P, N:
 - L(A, P, N) = max(|f(A)-f(P)|² |f(A)-f(N)|² + alpha, 0)
 - $\circ \quad \text{Overall loss J} = \text{sum}\{i=1 \text{ to } m\}[L(A^{(i)}, P^{(i)}, N^{(i)})]$
 - Training set: 10k pictures of 1k persons
 - Need multiple pictures of the same person
- How to choose triplets?
 - During training, if A, P, N are chosen randomly, d(A, P) + alpha <= d(A, N) is easily satisfied
 - Choose triplets that're "hard" to train on

- Maybe choose d(A, P) approx. d(A, N)
- Use gradient descent to minimize J
 - Will have effect of backpropagating
- Lots of pre-trained models online using very large data sets
- 37. Face Verification and Binary Classification
 - Instead of triplet loss, input embeddings into logistic regression to output 1s and 0s

Learning the similarity function

- Precompute for all images in database to save memory and computation time
- Train using supervised learning and pairs of images as inputs

NEURAL STYLE TRANSFER

38. What is it?

- Recreate image in style of another input image
 - C = content image, S = style image, G = generated image

39. What are deep ConvNets learning?

- Pick a unit in layer 1; find the nine image patches that maximize the unit's activation
- Repeat for other units
- Do the same thing for later layers
- Features get more complicated as we get deeper in network

40. Cost Function

- Given C and S generate G
- Minimize a loss J(G) using gradient descent
 - \circ J(G) = alpha*J_{content}(C, G) + beta*J_{style}(S, G)
- Find the generated G
 - 1. Initialize G randomly
 - 2. Use gradient descent to minimize J(G)
 - G = G partial_G J(G)
- 41. Content Cost Function

- Use hidden layer I to compute content cost
- Usually choose a intermediate layer
 - Too early on will make images too similar
 - Too deep will make images too different
- Use pre-trained ConvNet (e.g. VGG network)
- If activations of C and G at layer I are similar, both images have similar content
- $J_{\text{content}}(C, G) = \frac{1}{2} |a^{[1](C)} a^{[1](G)}|^2$

42. Style Cost Function

- Say we are using layer I's activation to measure "style"
- Define style as correlation between activations across channels
 - o Whenever a particular feature appears, other features may tend to appear with it
 - Thus, using degree of correlation between channels will allow us to get certain types of features occurring at the same time
- Style matrix
 - Actually using unnormalized co-covariance, not correlation
 - o Calculate correlation matrix for both S and G
 - Style cost is therefore difference between these two style matrices

- Better if we use from multiple layers!
 - Sum up loss from every layer with some weight lambda^[1]

FINAL REMARKS

43. 1D and 3D Generalization of Models

- We learned about 2D convolution with multiple channels
- Similar idea can be applied to 1D data
 - Convolve with a 1D filter by sliding across data
 - Usually use RNNs
- Same with 3D data
 - Just use a 3D filter and slide across everything