Attention is not not Explanation

By Sarah Wiegreffe Yuval Pinter

Presenter: Zijie Pan https://qdata.github.io/deep2Read/

02/21/2020

Attention is not Explanation is overstating

Key points in previous paper:

- Attention weights should correlate with feature importance measures.
- Counterfactually, attention weight configurations ought to yield corresponding changes in prediction (and if they do not then are equally plausible as explanations)

Methods

- Feature erase method
- Generate alternative weight distribution

Attention Distribution is not a Primitive

"From a modeling perspective, detaching the attention scores obtained by parts of the model degrades the model itself "

- Existence does not Entail Exclusivity

Uniform as the Adversary

 Examine whether attention is necessary in every dataset (ex. very simple task)

- Uniform Model Variant (attention weight distribution is frozen to uniform weights while training)

 Expectation: Large drop of performance if attention is a necessary component

Uniform as the Adversary Results

Dataset	Attent	Attention (Base)		
	Reported	Reproduced		
Diabetes	0.79	0.775	0.706	
Anemia	0.92	0.938	0.899	
IMDb	0.88	0.902	0.879	
SST	0.81	0.831	0.822	
AgNews	0.96	0.964	0.960	
20News	0.94	0.942	0.934	

Table 2: Classification F1 scores (1-class) on attention models, both as reported by Jain and Wallace and in our reproduction, and on models forced to use uniform attention over hidden states.

Variance with a Model

 To test whether the variances (J&W) between trained attention scores and adversarially-obtained ones are unusual.

 Different initialization random seeds -> variance of attention distribution (baseline variance)

Variance with a Model Results

Figure 3: Densities of maximum JS divergences (x-axis) as a function of the max attention (y-axis) in each instance between the base distributions and: (a-d) models initialized on different random seeds; (e-f) models from a perinstance adversarial setup (replication of Figure 8a, 8c resp. in Jain and Wallace (2019)). In each max-attention bin, top (blue) is the negative-label instances, bottom (red) positive-label instances.

Diagnosing Attention Distributions by Guiding Simpler Models

- A complementary approach to (J&W)
- Mitigate the contextual influence
- Replace LSTM with MLP
- Four weight settings:
 - Uniform weights
 - not freezing weights layer and train with MLP
 - Base LSTM
 - Weights found adversarially

Experiment Setup

Figure 4: Diagram of the setup in §3.4 (except TRAINED MLP, which learns weight parameters).

Results

Guide weights	Diab.	Anemia	SST	IMDb
UNIFORM	0.404	0.873	0.812	0.863
TRAINED MLP	0.699	0.920	0.817	0.888
BASE LSTM	0.753	0.931	0.824	0.905
Adversary (4)	0.503	0.932	0.592	0.700

Table 3: F1 scores on the positive class for an MLP model trained on various weighting guides. For AD-VERSARY, we set $\lambda \leftarrow 0.001$.

Training an Adversary

- Model-consistent training protocol for finding adversarial attention distribution, which can be used in faithful explainability
- To train model a to provide similar prediction scores for each instance as base model b,but distance its attention distribution from that of model b
- Loss function:

$$\mathcal{L}(\mathcal{M}_a, \mathcal{M}_b)^{(i)} = \operatorname{TVD}(\hat{y}_a^{(i)}, \hat{y}_b^{(i)}) - \lambda \operatorname{KL}(\boldsymbol{\alpha}_a^{(i)} \parallel \boldsymbol{\alpha}_b^{(i)}),$$

- TVD and JSD tradeoff

Guide weights	Diab.	Anemia	SST	IMDb
UNIFORM	0.404	0.873	0.812	0.863
TRAINED MLP	0.699	0.920	0.817	0.888
BASE LSTM	0.753	0.931	0.824	0.905
Adversary (4)	0.503	0.932	0.592	0.700

)

Explainability has many Definitions

- Explainable AI: *transparency*, *explainability*, *interpretability*
- Plausible or faithful or both
- Adversarial found distributions confirmed and indicate not a faithful interpretation of the model