Think Architecture First: Benchmarking Deep Learning Interpretability in Time Series Predictions

3 April 2020

Presenter: Sanchit Sinha

https://qdata.github.io/deep2Read/

Motivation

- Saliency methods used a lot to explain and rank the most important features of a data
- Conundrum: Do we focus on better saliency methods or better model architecture or somewhere in between
- Understanding usefulness of saliency methods on less studied time-series data
- Considering a slightly different metric precision and recall of the features
- No ground-truth to compare to, come up with a way to compare.
 - It is easy to **SEE** in visual problems
 - Easy to **INTERPRET** in NLP tasks
 - No way to tell in raw feature tasks
- Comparison between various saliency techniques (7) over multiple models
 (4) and datasets (11) = 308

Background

- Saliency methods:
 - Gradient (GRAD)

$$rac{\partial S_c(X)}{\partial x_{t_i}}$$

Input*Gradient

$$x_{t_i} imes rac{\partial S_c(X)}{\partial x_{t_i}}$$

Integrated Gradient (IG)

$$(x_{t_i} - \overline{x}_{t_i}) \times \int_{\alpha=0}^{1} \frac{\partial S_c(\overline{X} + \alpha(X - \overline{X}))}{\partial x_{t_i}} d\alpha$$

- o SmoothGrad (SG) $\frac{1}{n} \sum_{1}^{n} \frac{\partial S_c(X + \mathcal{N}(0, \sigma^2))}{\partial x_{t_i}}$
- DeepLift Only x-x'
- GradientSHAP Adding Gaussian Noise to SmoothGrad
- DeepSHAP DeepLift + Shapley
- o Random

Related Work

- The saliency methods mentioned before
- Ismail, A. A., Gunady, M., Pessoa, L., Corrada Bravo, H., and Feizi, S. Inputcell attention reduces vanishing saliency of recurrent neural networks: **On generating time series data**
- **Transformers:** Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-tion is all you need.
- **Temporal Convolutional Network:** (Oord et al., 2016; Lea et al., 2017; Bai et al., 2018)

Synthetic Data Generation

- Gaussian noise with o mean and unit variance
- Informative features highlighted by adding constant mu (=1) to positive class and subtracting mu from negative class
- Dataset size is 1000 (training) and 300 (testing)
- Embedding Size = 100, timesteps = 100
- Types of data generated:
 - Earlier Boxes
 - Middle Boxes
 - Latter Boxes
 - Moving Box -
 - Right Triangle information grows over time
 - Equilateral Triangle important for the majority of the time points
 - Unequal Events
 - Rare anomalies in time series variables
 - Sine info varies widely over time.

Figure for data generation

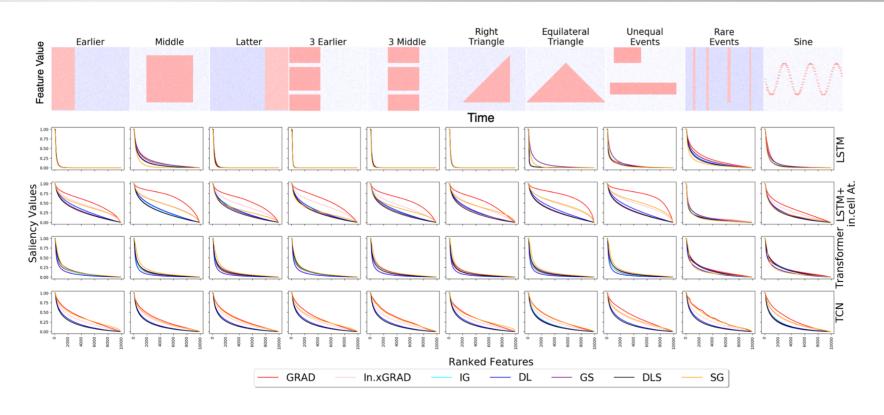


Figure 1. First row shows samples from our Synthetic Datasets, where red represents informative features and blue is Gaussian noise $\mathcal{N}(0, \sigma^2)$. Rows 2-5 shows the distribution of saliency values of ranked features produced by different saliency methods. Neural nets were trained to classify positive and negative examples for each dataset. The distribution of saliency is highly dependent on the neural architecture rather then the saliency method itself.

Proposed Solution

- Sort relevance R(X), so that $R_e(x_{t_i})$ is the e^{th} element in ordered set $\{R_e(x_{t_i})\}_{e=1}^{T\times N}$.
- Find top k relevance in the order set such that $\frac{\sum_{e=1}^{k} R_e(x_{t_i})}{\sum_{i=1,t=1}^{N,T} R(x_{t_i})} \approx d \text{ (where } d \text{ is percentage of distortion over all saliency).}$
- Adversarially attack x_{t_i} , where $R(x_{t_i}) \in \{R_e(x_{t_i})\}_{e=1}^k$; we used an L_{∞} projected gradient descent (Madry et al., 2017) attack.
- We calculate the drop in model accuracy after the attack, this is repeated at different levels of degradation $d = [0, 10, 20, \dots, 100]$.

Proposed Solution - 2

- The above process an result in:
 - A steep drop in accuracy, meaning that the attacked feature is necessary for a correct prediction (important feature)
 - Unchanged accuracy:
 - The saliency method incorrectly identified the feature as important (wrong method)
 - Removal is not sufficient for the model to behave incorrectly (ambiguous)
- So solution which the authors have proposed is to use Precision and Recall

Metrics

Actual Saliency	Informative	Noise
High	True Positive (TP)	False Positive (FP)
Low	False Negative (FN)	True Negative (TN)

Table 1. Confusion Matrix, for precision and recall calculation.

• Precision:

$$\frac{\sum R(x_{t_i}) \{x_{t_i} : x_{t_i} \in TP\}}{\sum R(x_{t_i}) \{x_{t_i} : x_{t_i} \in TP\} + \sum R(x_{t_i}) \{x_{t_i} : x_{t_i} \in FP\}}$$

• Recall:

$$\frac{\sum R(x_{t_i}) \{x_{t_i} : x_{t_i} \in TP\}}{\sum R(x_{t_i}) \{x_{t_i} : x_{t_i} \in TP\} + \sum R(x_{t_i}) \{x_{t_i} : x_{t_i} \in FN\}}$$

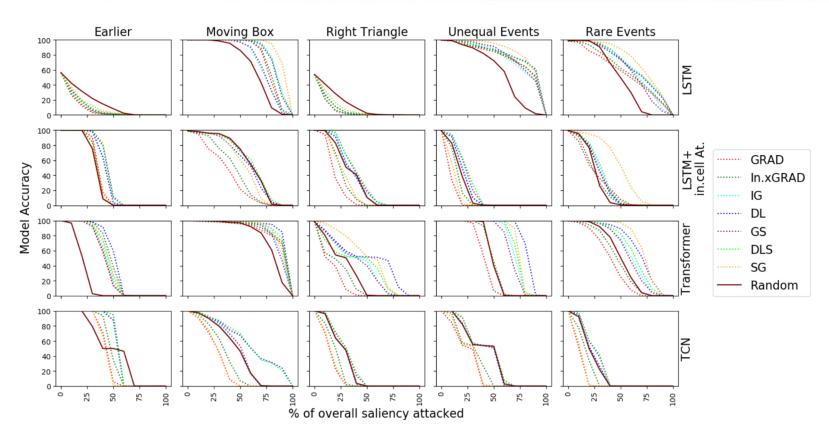


Figure 2. The effect of adversarially perturbing features identified as salient by different interpretability methods against a random baseline. The rate of accuracy drop is not consistent across datasets and architectures. The variance between the saliency method curves is relatively small (except for Transformers). In many cases there isn't a clear distinction between random baseline and other saliency methods.

Table 2. Precision and recall for different feature groups. **Bold** numbers show the highest precision or recall for a (*neural architecture*, *dataset*) pair. **Green** numbers show the highest precision or recall for a dataset. All numbers are represented as factors of 10^{-5} .

						Precis	ion						Recall												
		Earlier	Box		I	Right Tri	angle	•		Rare Ev	ents	Earlier Box					Right Tri	iangle	e	Rare Events					
		LSTM+			LSTM+					LSTM+			LSTM+			LSTM+			LSTM+						
Methods	LSTM		Trans.	TCN	LSTM		Trans.	TCN	LSTM		Trans.	TCN	LSTM		Trans.	TCN	LSTM	I in.cell At.	Trans.	TCN	LSTM		Trans.	TCN	
GRAD	0	104	44	82	-	25	-	15	159	60	96	-	0	85	24	42	-	47	-	25	43	299	26		
$In.\times GRAD$	0	80	78	80	-	53	-	14	154	60	113	0	0	101	35	50	-	63	-	31	34	298	23	0	
IG	0	76	30	91	0	39	9	10	100	69	87	0	0	89	36	51	0	52	46	21	48	279	27	0	
DL	0	82	32	91	0	47	32	10	171	96	140	0	0	90	37	51	0	50	61	21	40	275	26	0	
GS	0	100	11	87	0	45	21	29	91	42	77	0	0	91	24	53	0	53	43	30	44	255	27	0	
DLS	0	109	14	88	0	47	17	25	169	87	98	0	0	92	17	51	0	52	59	26	43	262	29	0	
SG	0	76	26	31	0	18	12	10	159	79	95	-	0	81	52	29	0	35	50	21	35	271	29	-	
Random	0	63	1	20	0	35	2	5	71	22	39	0	0	84	15	37	0	55	40	26	43	273	26	0	

⁽a) Features that result in 30% drop in accuracy when attacked. '-' indicates that the smallest attack caused accuracy drop > 30%

						Precis	ion						Recall												
	Earlier Box				Right Triangle				Rare Events					Earlier	Box	F	Right Tri	angle	2	Rare Events					
Methods	I STA	LSTM+ 1 in.cell At.	Trans	TCN	I STM	LSTM+	Trans	TCN	I STM	LSTM+	Trans	TCN	I STM	LSTM+	Trans	TCN	I STM	LSTM+	Trans	TCN	I STM	LSTM+	Trans	TCN	
GRAD	0	85	24	37	0	61	55	32	44	249	26	25	0	104	44	53	0	99	97	57	121	145	96	83	
In.×GRAD	0	101	26	44	0	70	63	38	35	244	23	20	0	80	45	52	0	88	104	55	119	140	113	87	
IG	0	89	23	40	0	61	65	30	59	248	31	27	0	76	13	43	0	71	33	46	59	84	46	79	
DL	0	90	22	40	0	59	71	30	42	248	32	27	0	82	12	43	0	84	56	46	107	123	64	79	
GS	0	89	24	42	0	61	47	36	50	229	28	27	0	71	11	40	0	78	34	54	49	54	39	81	
DLS	0	91	17	39	0	60	66	34	49	233	35	27	0	79	14	38	0	80	49	49	112	113	60	78	
SG	0	81	35	29	0	53	50	29	33	262	34	28	0	76	11	31	0	79	12	42	73	50	41	96	
Random	0	84	25	37	0	62	56	33	44	249	28	24	0	63	7	20	0	60	12	23	50	30	28	32	

⁽b) Highest ranked features that represent 30% of overall saliency.

						Precis	ion						Recall													
		Earlier	Box	Right Triangle				Rare Events					Earlier	Box	I	Right Tri	iangle	e	Rare Events							
Methods	I STN	LSTM+ 1 in.cell At.	Trans	TCN	I STM	LSTM+	Trans	TCN	I STM	LSTM+	Trans	TCN	I STM	LSTM+	Trans	TCN	I STN	LSTM+	Trans	TCN	I STM	LSTM+	Trans.	TCN		
GRAD	1												LSTW				LSTIV									
In.×GRAD	0	161 208	182 212	138 192	332	168 209	256 277	160 211	228	330 328	199 199	136 135		84 124	43 53	50 77	0	65 87	56 69	47 70	39 26	202 180	25 18	21		
III.×GRAD	0	208	236	238	332	215	273	228	202	308	239	243		83	68	88	0	66	68	60	36	89	29	34		
DL	0	200	246	238	332	213	285	229	256	328	236	243	0	83 82	64	88	0	61	64	60	38	178	23	34		
GS	0	200	219	253	333	204	246	238	229	306	223	239	0	82 87	68	98	0	62	54	63	33	85	30	33		
DLS	0	215	223	246	333	218	269	241	265	329	224	248	0	88	55	91	0	62	62	65	41	177	26	33 34		
SG	0	132	259	149	333	120	258	153	267	308	247	139	0	62	9 5	59	0	34	71	50	26	89	35	20		
Random	97	99	97	100	102	105	105	99	100	106	97	95	78	79	78	80	62	64	64	60	31	33	30	30		

(c) Top 30% of ranked features

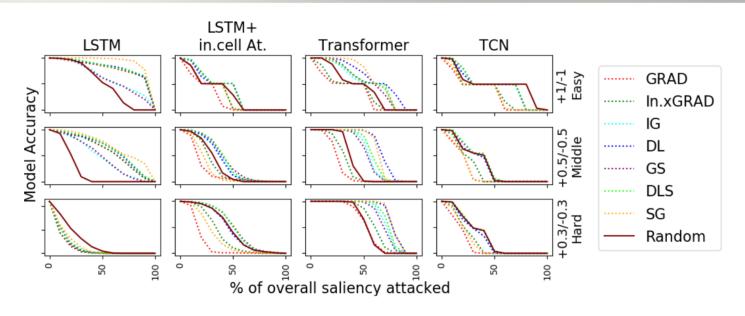


Figure 3. The effect of adversarially perturbing features identified as salient by different attribution methods when changing the difficulty of classification task. First row, shows the result for our standard informative features for positive class are generated as $\mathcal{N}(0, \sigma^2) + 1$ and negative $\mathcal{N}(0, \sigma^2) - 1$. Second row, positive class $\mathcal{N}(0, \sigma^2) + 0.5$ and negative $\mathcal{N}(0, \sigma^2) - 0.5$. Third row, positive class $\mathcal{N}(0, \sigma^2) + 0.3$ and negative $\mathcal{N}(0, \sigma^2) - 0.3$. The variance between the saliency method curves increases as the difficulty of the task increases (except for LSTM).

Table 3. Precision and recall of features that result in 30% drop in accuracy when attacked, for the same dataset but different classification difficulty. All numbers are represented as factors of 10^{-5} .

						Precis	sion						Recall												
	Middle Box +1/-1				Mid	dle Box	+0.5	/-0.5	Mide	Middle Box +0.3/-0.3			Mi	ddle Bo	x + 1/	-1	Middle Box +0.5/-0.5				Middle Box +0.3/-0.3			-0.3	
		LSTM+				LSTM+				LSTM+			LSTM+				LSTM+			LSTM+					
Methods	LSTM		Trans.	TCN	LSTM		Trans.	TCN	LSTM		Trans.	TCN	LSTM		Trans.	TCN	LSTM	in.cell At.	Trans.	TCN	LSTM		Trans.	TCN	
GRAD	0	192	37	141	1	90	53	39	-	136	91	0	0	49	16	37	1	23	43	11	-	33	116	0	
$In.\times GRAD$	0	181	34	134	1	95	53	39	-	134	98	0	0	46	25	35	2	52	55	11	-	62	155	0	
IG	0	195	30	135	0	120	53	37	0	133	94	0	0	42	5	60	0	79	31	10	0	81	77	0	
DL	0	192	66	130	1	119	48	37	0	131	88	0	0	45	19	61	3	85	47	10	0	90	107	0	
GS	0	184	42	136	0	115	51	102	0	141	100	22	0	86	8	59	0	74	22	51	0	119	72	9	
DLS	0	191	65	142	1	118	61	101	0	135	104	22	0	86	11	64	2	81	35	49	0	127	110	8	
SG	0	191	53	126	0	93	70	39	0	133	105	0	0	48	20	23	2	21	42	9	0	56	105	0	
Random	0	192	41	138	0	104	52	42	0	134	91	22	0	39	2	12	0	41	6	4	0	77	21	3	