Learning Variational Word Masks to Improve the Interpretability of Neural Text Classifier

Hanjie Chen, Yangfeng Ji

19 October 2020

Presenter: Sanchit Sinha https://qdata.github.io/deep2Read/

Motivation

- Interpretability is important for reaffirming reliability and trustworthiness of models
- Overcoming "black-box" nature of deep learning models
- Designing a model agnostic explainability method which can be used as a small addition during training
- It should be generalisable enough for all kinds of models, so only applied at the input layers
- No need for human intervention in providing correct or "ground truth" explanations or annotations
- Making interpretability one of the fundamental property of the network "built into it"

Background

• Information Bottleneck framework

$$\max_{\boldsymbol{Z}} I(\boldsymbol{Z};\boldsymbol{Y}) - \beta \cdot I(\boldsymbol{Z};\boldsymbol{X})$$

• Mutual information/Information Gain:

$$\mathrm{I}(X;Y) = \sum_{y\in\mathcal{Y}}\sum_{x\in\mathcal{X}}p_{(X,Y)}(x,y)\log{\left(rac{p_{(X,Y)}(x,y)}{p_X(x)\,p_Y(y)}
ight)},$$

Related Work

- Information Theory based explainability methods:
 - Maximizing mutual information to recognize important features - Chen et al., 2018; Guan et al., 2019
 - Optimizing the information bottleneck to identify feature attributions - Schulz et al., 2020; Bang et al., 2019
- Improving prediction using interpretability:
 - Post-hoc explanations to regularize models on prediction behaviors and force them to emphasize more on predefined important features - Ross et al., 2017; Ross and Doshi-Velez, 2018; Liu and Avci, 2019; Rieger et al., 2019
- Trying to correspond interpretability with human explainations
 - Camburu et al., 2018; Du et al., 2019b; Chen and Ji, 2019;
 Erion et al., 2019; Plumb et al., 2019

Claim / Target Task

- Introduce a model agnostic binary layer (mask) on top of the inputs which improves interpretability
- The layer acts as a filter to control the interactions of non-important words and only allows the important words to affect the output
- Layer gives better prediction and interpretability performance

Data Summary

Datasets	С	L	#train	#dev	#test
IMDB	2	268	20K	5K	25K
SST-1	5	18	8544	1101	2210
SST-2	2	19	6920	872	1821
Yelp	2	138	500K	60K	38K
AG News	4	32	114K	6K	7.6K
TREC	6	10	5000	452	500
Subj	2	23	8000	1000	1000

An Intuitive Figure Showing WHY Claim

Proposed Solution

- Notation :
 - X: Input words encoded into embeddings
 - R: Our custom V-Mask Layer. Every element is {0,1}
 - Z: Output of hadamard product of X and R
 - Y: The output prediction of the network (after classification)
- Main optimization function:

$$\max_{\boldsymbol{Z}} I(\boldsymbol{Z};\boldsymbol{Y}) - \beta \cdot I(\boldsymbol{Z};\boldsymbol{X}),$$

• Replacing p(x,y,z) [True distribution] with q(x,y,z) [Approximation distribution]

Proposed Solution

• Term-1:

$$I(\boldsymbol{Z};\boldsymbol{Y}) \geq \sum_{\boldsymbol{y},\boldsymbol{z}} q(\boldsymbol{y},\boldsymbol{z}) \log p(\boldsymbol{y}|\boldsymbol{z}) + H_q(\boldsymbol{Y}) \qquad I(\boldsymbol{Z};\boldsymbol{Y}^{(i)}) \geq \sum_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) \log p(\boldsymbol{y}^{(i)}|\boldsymbol{z}) \\ = \sum_{\boldsymbol{y},\boldsymbol{z},\boldsymbol{x}} q(\boldsymbol{x},\boldsymbol{y})q(\boldsymbol{z}|\boldsymbol{x}) \log p(\boldsymbol{y}|\boldsymbol{z}) \qquad \qquad = \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x}^{(i)})}[\log p(\boldsymbol{y}^{(i)}|\boldsymbol{z})].$$

• Term-2:
$$I(\boldsymbol{Z};\boldsymbol{X}) \leq \mathbb{E}_{q(\boldsymbol{x})}[\operatorname{KL}[q(\boldsymbol{z}|\boldsymbol{x}) \| p_0(\boldsymbol{z})]]$$
$$= \operatorname{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) \| p_0(\boldsymbol{z})],$$

$$egin{aligned} \mathcal{L} = & \mathbb{E}_{q(oldsymbol{z} | oldsymbol{x}^{(i)})} [\log p(oldsymbol{y}^{(i)} | oldsymbol{z})] \ & -eta \cdot \mathrm{KL}[q(oldsymbol{z} | oldsymbol{x}^{(i)}) \| p_0(oldsymbol{z})]. \end{aligned}$$

Proposed Solution

• Substituting for R, we get

$$egin{aligned} \mathcal{L} = & \mathbb{E}_{q(oldsymbol{r} \mid oldsymbol{x}^{(i)})} [\log p(oldsymbol{y}^{(i)} \mid oldsymbol{R}, oldsymbol{x}^{(i)})] \ & - eta \cdot \mathrm{KL}[q(oldsymbol{R} \mid oldsymbol{x}^{(i)}) \| p_0(oldsymbol{R})]. \end{aligned}$$

- Tricks for optimization
 - Mean-field approximation (independence of rand vars)
 - Gumbel-softmax trick (for softmax)
 - KL cost annealing (posterior collapse)
- Models used same as last paper CNN, LSTM, BERT

Experimental Results - Training

Models	Methods	IMDB	SST-1	SST-2	Yelp	AG News	TREC	Subj
	CNN-base	89.06	46.32	85.50	94.32	91.30	92.40	92.80
	$\text{CNN-}\ell_2$	89.12	46.01	85.56	94.46	91.28	90.62	92.39
CNN	CNN-L2X	78.94	37.92	80.01	83.14	84.36	61.00	82.40
	CNN-IBA	88.31	41.40	84.24	93.82	91.37	89.80	91.80
	CNN-VMASK	90.10	48.92	85.78	94.53	91.60	93.02	93.50
	LSTM-base	88.39	43.84	83.74	95.06	91.03	90.40	90.20
	$LSTM-\ell_2$	88.40	43.91	83.36	95.00	91.09	90.20	89.10
LSTM	LSTM-L2X	67.45	36.92	75.45	77.12	77.53	46.00	81.80
	LSTM-IBA	88.48	42.99	83.53	94.74	91.14	85.40	89.50
	LSTM-VMASK	90.07	44.12	84.35	95.41	92.19	90.80	91.20
BERT	BERT-base	91.80	53.43	92.25	96.42	93.59	96.40	95.10
	BERT- ℓ_2	91.75	52.08	92.25	96.41	93.52	96.80	94.80
	BERT-L2X	71.75	39.23	74.03	87.14	82.59	93.20	86.10
	BERT-IBA	91.66	53.80	92.24	96.27	93.45	96.80	95.60
	BERT-VMASK	93.04	54.53	92.26	96.80	94.24	97.00	96.40

Experimental Results - AOPC

Methods	Models	IMDB	SST-1	SST-2	Yelp	AG News	TREC	Subj
LIME	CNN-base	14.47	7.59	16.50	10.69	5.66	15.28	9.77
	CNN-VMASK	14.74	8.63	18.86	11.38	9.03	14.81	12.40
	LSTM-base	14.34	8.76	17.03	8.72	7.00	11.95	9.67
	LSTM-VMASK	15.10	9.52	22.14	9.70	7.39	11.97	11.68
	BERT-base	10.63	36.00	35.89	6.30	7.00	59.22	13.08
	BERT-VMASK	12.64	36.16	46.87	6.49	8.47	60.37	17.82
SampleShapley	CNN-base	15.53	7.63	13.15	13.57	9.88	14.97	8.84
	CNN-VMASK	15.53	8.33	15.95	15.06	9.98	15.03	12.88
	LSTM-base	15.80	7.91	22.38	10.55	6.62	11.90	11.66
	LSTM-VMASK	16.48	9.73	22.52	10.99	7.65	11.86	12.74
	BERT-base	12.97	42.06	43.16	18.06	7.21	57.69	33.22
	BERT-VMASK	13.18	44.57	50.44	18.17	10.02	58.26	34.22

Experimental Results - Post-hoc accuracy

• Influence of top k% words on the accuracy vs the whole text

Experimental Results - Qualitative

Models	Texts	Prediction
CNN-base CNN-VMASK	Primary plot , primary direction , poor interpretation . Primary plot , primary direction , poor interpretation .	negative negative
LSTM-base	John Leguizamo's freak is one of the funniest one man shows I've ever seen. I recommend it to anyone with a good sense of humor.	positive
LSTM-VMASK	John Leguizamo 's freak is one of the funniest one man shows I 've ever seen . I recommend it to anyone with a good sense of humor .	positive
BERT-base	Great story, great music. A heartwarming love story that 's beautiful to watch and delightful to listen to. Too bad there is no soundtrack CD.	positive
BERT-VMASK	Great story, great music. A heartwarming love story that's beautiful to watch and delightful to listen to. Too bad there is no soundtrack CD.	positive