Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

3 Feb 2020

Presenter: Sanchit Sinha https://qdata.github.io/deep2Read/

Motivation

- Answer these questions:
 - Why do neural networks predict the way they do?
 - Why do NNs make predictions which seem to be totally irrelevant
 - What parts of an image are the most useful in predictions
 - Does adversarial perturbation of image change where the NN "look"?
- Generalize an explainability method which works across all types and varieties of CNNs
- Should also work on different domains classification, segmentation, VQA, etc.

Background

- Explainability and performance are often a tradeoff
 - Simple rule based classifiers with very high explainability do not perform well on complex tasks
 - Complex DNNs are often considered "black boxes" but are very good at complex tasks (sometimes better than humans)
- GradCAM builts with inspiration from Class Activation Mapping which was proposed to find the "active" regions in pure CNNs
- Guided Backprop was the first such technique to venture into explainability it gives high quality pixel-space gradient visualization methods.
- Deconvolution is also similar to Guided Backprop

Related Work

- Guided Backprop
- Deconvolutions
- CAM
- VQA
- Localization/Segmentation

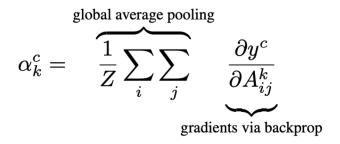
Claim / Target Task

- Class-discriminative localization technique that generates visual explanations for any CNN-based network
- Apply Grad-CAM to existing top-performing classification, captioning and VQA models.
- Proof-of-concept of how interpretable GradCAM visualizations help in diagnosing failure modes
- Present Grad-CAM visualizations for ResNets
- Neuron importance from Grad-CAM and neuron names

Proposed Solution

Γ

- First taking derivatives with respect to the output (before the softmax) of a particular class.
- Global average pooling over the width*height of the desired map. Obtaining map level importance score.



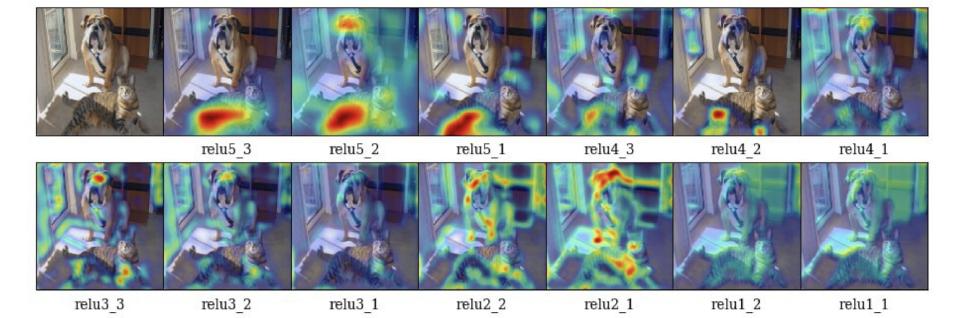
• As we are only interested in the activations which give "positive" influence on the scores, we have to remove the negative gradients. So we apply the ReLU

$$\mathcal{L}_{\text{Grad-CAM}}^{c} = ReLU\left(\sum_{k} \alpha_{k}^{c} A^{k}\right)$$

linear combination

Implementation

- Only used the Convolution layer output from the last convolution layer before the fully connected layers.
 - Why? The last layer will have the largest receptive field and will give the best spatial information.
 - Why only Conv layers? If we use it in FC layers, the spatial information is lost
- Guided GradCAM Hadamard product (element-wise) of the heatmaps from the GradCAM and Guided Backpropagation.
 - Why? Guided Backprop gives much higher quality output. Taking element-wise product with the GradCAM output will definitely only highlight the most important and high quality areas of the maps



Data Summary

Too many different to summarize. Imagenet Pascal VOC COCO

Experimental Results - Localization

		Classification		Localization	
		Top- 1	Top- 5	Top- 1	Top- 5
VGG-16	Backprop [51]	30.38	10.89	61.12	51.46
	c-MWP [58]	30.38	10.89	70.92	63.04
	Grad-CAM (ours)	30.38	10.89	56.51	46.41
	CAM [59]	33.40	12.20	57.20	45.1
AlexNet	c-MWP [58]	44.2	20.8	92.6	89.2
	Grad-CAM (ours)	44.2	20.8	68.3	56.6
GoogleNet	Grad-CAM (ours)	31.9	11.3	60.09	49.34
	CAM [59]	31.9	11.3	60.09	49.34

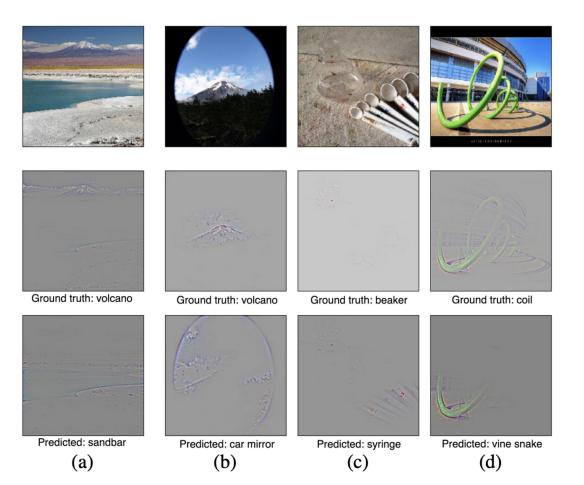
Experimental Results - Segmentation

Input Ground-Truth SEC with Grad-CAM

Fig. 4: PASCAL VOC 2012 Segmentation results with Grad-CAM as seed for SEC [32].

Experimental Results - Diagnosis

6.1 Analyzing failure modes for VGG-16

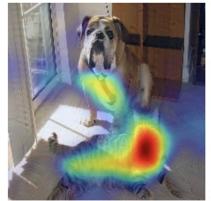


Experimental Results - Adversarial

Boxer: 0.4 Cat: 0.2 (a) Original image


```
Airliner: 0.9999
(b) Adversarial image
```


Boxer: 1.1e-20 (C) Grad-CAM "Dog"



Tiger Cat: 6.5e-17 (d) Grad-CAM "Cat"

Airliner: 0.9999 (e) Grad-CAM "Airliner"

Experimental Results - Bias

Input Image

Ground-Truth: Nurse

Grad-CAM for **Biased model**

Predicted: Nurse

Grad-CAM for **Unbiased model**

Predicted: Nurse

Ground-Truth: Doctor

Experimental Results - Captioning

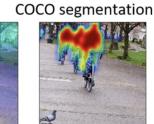
bus

Grad-CAM

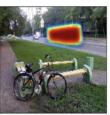
bike

bench

(a)



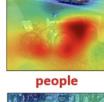
bike



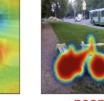
bus

bench

People riding bicycles down



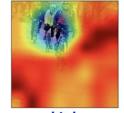
Grad-CAM



people

COCO segmentation

bicycles

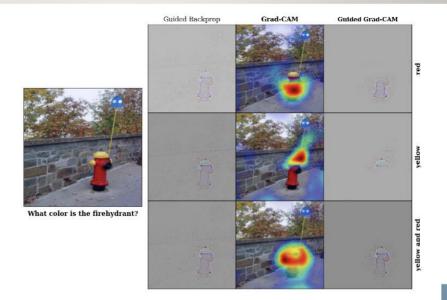


bird

(b)

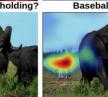
15

Experimental Results - VQA



What is the man doing?

Elephant



Zebra

What is that?

References

- D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualizing Higher-layer Features of a Deep Network. University of Montreal, 1341, 2009. 3 17.
- M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results.
- M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization for free? – weakly-supervised learning with convolutional neural networks. In CVPR, 2015.