Generating Hierarchical Explanations on Text Classification via Feature Interaction Detection

Hanjie Chen, Guangtao Zheng, Yangfeng Ji

19 October 2020

Presenter: Sanchit Sinha https://qdata.github.io/deep2Read/

Motivation

- Interpretability is important for reaffirming reliability and trustworthiness of models
- Overcoming "black-box" nature of deep learning models
- Ideal goal of any interpretability technique human understandable explanations
- Hierarchical explanations superior to simple attributions (proven by prior work)
- Designing a model agnostic explainability approach to works for any model LSTM, BERT, etc.

Background

- Model agnostic Explainability:
 - Leave one out
 - LIME
 - Shapley Value based
- Shapley Values:
 - Shapley value of a feature: contribution of that feature to the output

$$arphi_i(v) = \sum_{S\subseteq N\setminus\{i\}} rac{|S|!\;(n-|S|-1)!}{n!} (v(S\cup\{i\})-v(S))$$

- Hierarchical Explanations:
 - Proven to be most human friendly
 - ACD (discussed before) uses CD values as distance metric for bottom up clustering
 - Interactions between phrases important

Related Work

- Shapley Interactions between features Owen, 1972; Grabisch, 1997; Fujimoto et al., 2006
- CD and ACD Murdoch et al, Singh et al.
- LIME
- Consistent Individualized Feature Attribution for Tree Ensembles Lundberg et al. (Shap values for trees)
- BERT

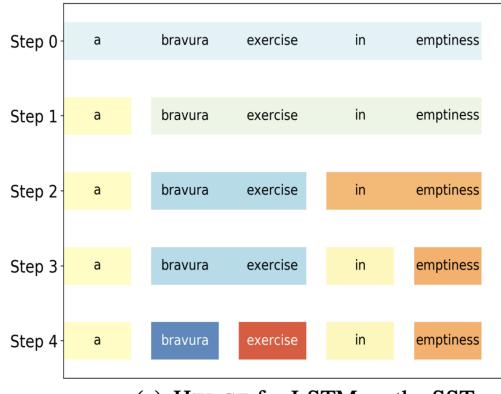
Claim / Target Task

- Designing a model agnostic explainability method
- **Detecting feature interaction**: Use Shapley interaction values between two phrases as the "cut" metric the lesser the value, the earlier the "cut".
- **Quantifying feature importance:** Assign importance values to each phrase at all levels
- Improving metrics wrt current SOTA:
 - AOPC
 - Log Odds
 - \circ Cohesion Score

Data Summary

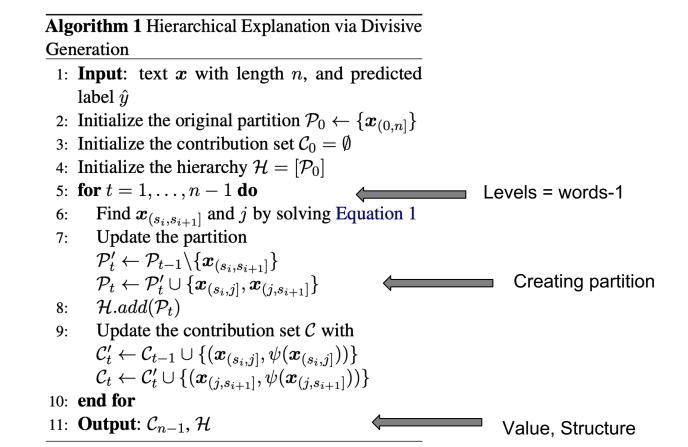
- All datasets are for Text classification
- 10% held out for dev set
- SST-2: Binary Labels 6920/872/1821 examples in the train/dev/test set
- IMDb : Binary Labels 25000/25000 examples in the train/test set

An Intuitive Figure Showing WHY Claim



(a) HEDGE for LSTM on the SST.

- The intuition of the algorithm can be divided into two parts.
 - Part 1: Finding the "split point" where we divide a phrase into 2 least interacting phrases
 - Part2: Quantifying the impact of a phrase on the prediction



- Part 1: Finding the split -
 - Step 0: The whole sentence is a partition.
 - Step 1: For every phrase pair, calculate the following:

$$\min_{\boldsymbol{x}_{(s_i,s_{i+1}]} \in \mathcal{P}} \min_{j \in (s_i,s_{i+1})} \phi(\boldsymbol{x}_{(s_i,j]}, \boldsymbol{x}_{(j,s_{i+1}]} \mid \mathcal{P}),$$

- Creating phrase: {word 0, word 1,n} {word 0,1, word 2,n}
- Selecting the split point where the phi function value is the least
- Phi value is basically the Shapley value for interaction between 2 phrases
- Calculating the phi function value:
 - Is the same as the Shapley value. Here M-1 is the size of partition after removing 2 interacting phrases

$$\phi(j_1, j_2 | \mathcal{P}) = \sum_{S \subseteq \mathcal{N}_m \setminus \{j_1, j_2\}} \frac{|S|! (M - |S| - 2)!}{(M - 1)!} \gamma(j_1, j_2, S),$$

• Original Shapley:

$$arphi_i(v) = \sum_{S\subseteq N\setminus\{i\}} rac{|S|!\;(n-|S|-1)!}{n!} (v(S\cup\{i\})-v(S))$$

• Modified Shapley interaction

$$egin{aligned} &\gamma(j_1,j_2,S) = \mathbb{E}[f(oldsymbol{x}') \,|\, S \cup \{j_1,j_2\}] - \mathbb{E}[f(oldsymbol{x}') \,|\, S \cup \{j_1\}] \ &- \mathbb{E}[f(oldsymbol{x}') \mid S \cup \{j_2\}] + \mathbb{E}[f(oldsymbol{x}') \mid S], \end{aligned}$$

- The size of neighbourhood (M) is set to a smaller value due to words having highest interaction with words before or after the most rather than far away.
- This means that complexity for each word is fixed at +/- 2 which is polynomial, but if the whole sentence is taken the complexity multiplies by 'n' (size of sentence)

- Part 2 Quantifying feature importance
 - Basically how far away from the decision boundary is our prediction
 - The farther away, the more important the feature to the prediction value

$$egin{aligned} \psi(m{x}_{(s_i,s_{i+1}]}) =& f_{\hat{y}}(m{x}_{(s_i,s_{i+1}]}) \ &- \max_{y'
eq \hat{y}, y' \in \mathcal{Y}} f_{y'}(m{x}_{(s_i,s_{i+1}]}), \end{aligned}$$

• This makes the algorithm model agnostic

Experimental Results - Metrics

• AOPC - "average change in the prediction probability on the predicted class over all test data" - Remove top k% words and then measure the drop in performance. Higher is better

$$AOPC(k) = \frac{1}{N} \sum_{i=1}^{N} \{ p(\hat{y} \mid \boldsymbol{x}_i) - p(\hat{y} \mid \tilde{\boldsymbol{x}}_i^{(k)}) \},\$$

• Log Odds - "averaging the difference of negative logarithmic probabilities on the predicted class over all of the test data before and after masking the top r% features with zero paddings" - occlusion. Lower is better

$$ext{Log-odds}(r) = rac{1}{N} \sum_{i=1}^N \log rac{p(\hat{y} \mid ilde{m{x}}_i^{(r)})}{p(\hat{y} \mid m{x}_i)}.$$

• Cohesion Score - Permuting each word of the sentence and calculate interactions. Higher is better.

$$\text{Cohesion-score} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{Q} \sum_{q=1}^{Q} (p(\hat{y} \mid \boldsymbol{x}_i) - p(\hat{y} \mid \bar{\boldsymbol{x}}_i^{(q)})).$$

Experimental Results - AOPC/Log Odds

Datasets	Methods	LSTM		CNN		BERT	
		AOPC	Log-odds	AOPC	Log-odds	AOPC	Log-odds
SST	Leave-one-out	0.441	-0.443	0.434	-0.448	0.464	-0.723
	CD	0.384	-0.382	-	-	-	-
	LIME	0.444	-0.449	0.473	-0.542	0.134	-0.186
	L-Shapley	0.431	-0.436	0.425	-0.459	0.435	-0.809
	C-Shapley	0.423	-0.425	0.415	-0.446	0.410	-0.754
	KernelSHAP	0.360	-0.361	0.387	-0.423	0.411	-0.765
	SampleShapley	0.450	-0.454	0.487	-0.550	0.462	-0.836
	HEDGE	0.458	-0.466	0.494	-0.567	0.479	-0.862
	Leave-one-out	0.630	-1.409	0.598	-0.806	0.335	-0.849
	CD	0.495	-1.190	-	-	-	-
	LIME	0.764	-1.810	0.691	-1.091	0.060	-0.133
	L-Shapley	0.637	-1.463	0.623	-0.950	0.347	-1.024
IMDB	C-Shapley	0.629	-1.427	0.613	-0.928	0.331	-0.973
	KernelSHAP	0.542	-1.261	0.464	-0.727	0.223	-0.917
	SampleShapley	0.757	-1.597	0.707	-1.108	0.355	-1.037
	HEDGE	0.783	-1.873	0.719	-1.144	0.411	-1.126

Experimental Results - Cohesion

Methods	Models	Cohesion-score		
	WIGUEIS	SST	IMDB	
	CNN	0.016	0.012	
Hedge	BERT	0.124	0.103	
	LSTM	0.020	0.050	
ACD	LSTM	0.015	0.038	

Experimental Results - Coherence/AMT

Methods	Coherence Score		
Leave-one-out	0.82		
ACD	0.68		
LIME	0.85		
L-Shapley	0.75		
C-Shapley	0.73		
KernelSHAP	0.56		
SampleShapley	0.78		
HEDGE	0.89		

Table 4: Human evaluation of different interpretationmethods with LSTM model on the IMDB dataset.

Models	Accuracy	Coherence scores
LSTM	0.87	0.89
CNN	0.90	0.84
BERT	0.97	0.75

Table 5: Human evaluation of HEDGE with different models on the IMDB dataset.

Experimental Analysis

• Explanation method works well

- Works better than LIME, ACD, Shapley
- BERT gives very high accuracy but is not very interpretable