Benchmarking Graph Neural Networks Vijay Prakash Dwivedi Chaitanya K. Joshi Thomas Laurent Yoshua Bengio Xavier Bresson

20 March 2020

Presenter: Sanchit Sinha https://qdata.github.io/deep2Read/

Motivation

- Need for Benchmarking:
 - GNNs are thought of as much more generalisable
 - Graph data holds a lot more information
 - Not well explored
- Problems with Benchmarking:
 - **Datasets**: The datasets which exist are not representative/challenging
 - **Performance**: Some GNN models don't perform as well as non-GNNs
 - **Settings**: Experimental settings are not yet standardized

Background

Graph Neural Networks (only a few used in this paper):
Basic:

Basic:
$$\hat{h}_i^{\ell+1} = \frac{1}{\deg_i} \sum_{j \in \mathcal{N}_i} h_j^{\ell}, \qquad h_i^{\ell+1} = \sigma(U^{\ell} \ \hat{h}_i^{\ell+1})$$

• Mean GraphStage: $\hat{h}_i^{\ell+1} = \text{Concat}\left(h_i^{\ell}, \frac{1}{\deg_i} \sum_{j \in \mathcal{N}_i} h_j^{\ell}\right)$

$$\circ \quad \mathbf{GIN:} \qquad \hat{h}_i^{\ell+1} = (1+\epsilon) h_i^{\ell} + \sum_{j \in \mathcal{N}_i} h_j^{\ell},$$
$$h_i^{\ell+1} = \sigma \Big(U^{\ell} \sigma \big(\operatorname{BN}(V^{\ell} \hat{h}_i^{\ell+1}) \big) \Big),$$

• Anisotropic: $\hat{h}_i^{\ell+1} = w_i^{\ell} h_i^{\ell} + \sum_{j \in \mathcal{N}_i} w_{ij}^{\ell} h_j^{\ell},$

Claim / Target Task

- Propose a benchmark, with plug and play methods model and datasets
- Create new datasets by converting well known datasets into graphs
- Proposed/tested building blocks of GNN
- Compare performance

Data Summary

- Old Graph Datasets:
 - CORA
 - \circ TU
- Converted Datasets:

Table 1. Sum	mary statistic	s of proposed	l benchmark	datasets.
--------------	----------------	---------------	-------------	-----------

Domain/Construction	Dataset	# graphs	# nodes
Computer Vision/ Graphs constructed with super-pixels	MNIST CIFAR10	70K 60K	40-75 85-150
Chemistry/ Real-world molecular graphs	ZINC	12K	9-37
Artificial/ Graphs generated from Stochastic Block Model	PATTERN CLUSTER	14K 12K	50-180 40-190
Artificial/ Graphs generated from uniform distribution	TSP	12K	50-500

Proposed Solution - Superpixel

(a) MNIST

(b) CIFAR10

Domain/Construction	Dataset	# graphs	# nodes
Computer Vision/ Graphs constructed with super-pixels	MNIST CIFAR10	70K 60K	40-75 85-150
Chemistry/ Real-world molecular graphs	ZINC	12K	9-37
Artificial/ Graphs generated from Stochastic Block Model	PATTERN CLUSTER	14K 12K	50-180 40-190
Artificial/ Graphs generated from uniform distribution	TSP	12K	50-500

Experimental Results

Table 3. Performance on the standard test sets of MNIST and CI-FAR10 (higher is better). Results are averaged over 4 runs with 4 different seeds. **Red**: the best model, **Violet**: good models. **Bold** indicates the best model between residual and non-residual connections (both models are bold if they perform equally).

Detect	Madal	#Donom	Residual		No Residual	
Dataset	widdei	#raram	Acc	Epoch/Total	Acc	Epoch/Total
	MLP	104044	not used		94.46±0.28	21.82s/1.02hr
	MLP (Gated)	105717	nc	ot used	95.18±0.18	22.43s/0.73hr
	GCN	101365	89.99±0.15	78.25s/1.81hr	89.05±0.21	79.18s/1.76hr
E	GraphSage	102691	97.09±0.02	75.57s/1.36hr	97.20±0.17	76.80s/1.42hr
SIN	GIN	105434	93.91±0.63	34.30s/0.73hr	93.96±1.30	34.61s/0.74hr
W	DiffPool	106538	95.02±0.42	170.55s/4.26hr	94.66±0.48	171.38s/4.45hr
	GAT	110400	95.62±0.13	375.71s/6.35hr	95.56±0.16	377.06s/6.35hr
	MoNet	104049	90.36±0.47	581.86s/15.31hr	89.73±0.48	567.12s/12.05hr
	GatedGCN	104217	97.37±0.06	128.39s/2.01hr	97.36±0.12	127.15s/2.13hr
	GatedGCN-E*	104217	97.24±0.10	135.10s/2.25hr	97.47±0.13	127.86s/2.15hr
	MLP	104044	not used		56.01±0.90	21.82s/1.02hr
	MLP (Gated)	106017	not used		56.78±0.12	27.85s/0.68hr
	GCN	101657	54.46±0.10	100.91s/2.73hr	51.64 ± 0.45	100.30s/2.44hr
10	GraphSage	102907	65.93±0.30	96.67s/1.88hr	66.08±0.24	96.00s/1.79hr
AR	GIN	105654	53.28±3.70	45.29s/1.24hr	47.66 ± 0.47	44.30s/0.93hr
CIF	DiffPool	108042	57.99±0.45	298.06s/10.17hr	56.84 ± 0.37	299.64s/10.42hr
	GAT	110704	65.40±0.38	389.40s/7.32hr	65.48±0.33	386.14s/7.75hr
	MoNet	104229	53.42±0.43	836.32s/22.45hr	50.99±0.17	869.90s/21.79hr
	GatedGCN	104357	69.19±0.28	146.80s/2.48hr	68.92±0.38	145.14s/2.49hr
	GatedGCN-E*	104357	68.64 ± 0.60	158.80s/2.74hr	69.37±0.48	145.66s/2.43hr

*GatedGCN-E uses the graph adjacency weight as edge feature.

Experimental Results

Table 5. Performance on the standard test sets of PATTERN and CLUSTER SBM graphs (higher is better). Results are averaged over 4 runs with 4 different seeds. **Red**: the best model and Violet: good models. **Bold** indicates the best model between residual and non-residual connections.

Datasat Model		#Dorom	Residual		No Residual	
Dataset	Iviouei	#rarain	Acc	Epoch/Total	Acc	Epoch/Total
	MLP	105263	not used		50.13±0.00	8.68s/0.10hr
	MLP (Gated)	103629	not used		$50.13 {\pm} 0.00$	9.78s/0.12hr
-	GCN	100923	74.36±1.59	97.37s/2.06hr	55.22 ± 0.17	97.46s/2.30hr
RN	GraphSage	98607	78.20 ± 3.06	79.19s/2.57hr	81.25±3.84	79.43s/2.14hr
TE	GIN	100884	96.98±2.18	14.12s/0.32hr	98.25±0.38	14.11s/0.37hr
AT	GAT	109936	90.72±2.04	229.76s/5.73hr	88.91±4.48	229.65s/8.78hr
A	MoNet	103775	95.52±3.74	879.87s/21.80hr	97.89±0.89	870.05s/24.86hr
	GatedGCN	104003	$95.05{\pm}2.80$	115.55s/2.46hr	97.24±1.19	115.03s/2.59hr
	MLP	106015	not used		20.97±0.01	6.54s/0.08hr
	MLP (Gated)	104305	not used		$20.97 {\pm} 0.01$	7.37s/0.09hr
~	GCN	101655	47.82±4.91	66.58s/1.26hr	34.85 ± 0.65	66.81s/1.21hr
LUSTER	GraphSage	99139	44.89±3.70	54.53s/1.05hr	53.90±4.12	54.40s/1.19hr
	GIN	103544	$49.64{\pm}2.09$	11.60s/0.27hr	52.54±1.03	11.57s/0.27hr
	GAT	110700	49.08 ± 6.47	158.23s/4.08hr	54.12±1.21	158.46s/4.53hr
0	MoNet	104227	45.95±3.39	635.77s/15.32hr	39.48 ± 2.21	600.04s/11.18hr
	GatedGCN	104355	54.20±3.58	81.39s/2.26hr	50.18 ± 3.03	80.66s/2.07hr

Table 6. Performance on TSP test set graphs with and without residual connections (higher is better). Results are averaged over 2 runs with 2 different seeds. **Red**: the best model and **Violet**: good models. **Bold** indicates the best model between residual and non-residual connections (both models are bold if they perform equally).

Model	#Param	Re	esidual	No Residual		
widuei	π1 a1 a111	F 1	Epoch/Total	F1	Epoch/Total	
k-NN Heuristic	k=2	F1: 0.693				
MLP	94394	na	ot used	0.548 ± 0.003	53.92s/2.85hr	
MLP (Gated)	115274	nc	ot used	$0.548 {\pm} 0.001$	54.39s/2.44hr	
GCN	108738	0.627±0.003	163.36s/11.26hr	0.547±0.003	164.41s/10.28hr	
GraphSage	98450	0.663±0.003	145.75s/16.05hr	0.657±0.002	147.22s/14.33hr	
GIN	118574	0.655±0.001 73.09s/5.44hr		0.657±0.001	74.71s/5.60h	
GAT	109250	0.669±0.001	360.92s/30.38hr	0.567±0.003	360.74s/20.55hr	
MoNet	94274	0.637±0.010	1433.97s/41.69hr	$0.569 {\pm} 0.002$	1472.65s/42.44hr	
GatedGCN	94946	0.794±0.004	203.28s/15.47hr	0.791±0.003	202.12s/15.20hr	
GatedGCN-E*	94946	0.802±0.001 201.40s/15.19hr		$0.794{\pm}0.003$	201.32s/15.05hr	

*GatedGCN-E uses the pairwise distance as edge feature.

Generating correlated features (for images) - ?

1 Simulation Data Generation

Assuming we have p features. $\Delta, R_I \in \mathbb{R}^{p \times p}$, Δ and R_I are both Erdos Renyi graphs, with probability p_d and p_i respectively.

In a multivariate normal distribution, the key property of the precision matrix(inverse of covariance) is that its zeros indicate conditional independence. The values indicate partial correlation of two variables. Specifically: $\Omega_{ij}=0$ if and only if X_i and X_j are conditionally independent given all other coordinates of X. We generate data from two classes A and B using the following equations:

$$\Omega_A = \Delta + R_I \tag{1}$$

$$\Omega_B = R_I \tag{2}$$

$$X_A \sim N(0, \Omega_A^{-1}) \tag{3}$$

$$X_B \sim N(0, \Omega_B^{-1}) \tag{4}$$

Main takeaway: Generating the covariance matrix

In the code a random E-R graph is made and its adjacency matrix' inverse is taken as covariance matrix to the normal distributions