Attention is not Explanation Sarthak Jain, Byron C. Wallace - Northeastern University

21 Feb 2020

Presenter: Sanchit Sinha https://qdata.github.io/deep2Read/

Motivation

- Attention mechanisms are being used to demonstrate transparency in standard NLP downstream tasks text classification, question answering and natural language inference
- Is attention **actually explaining** the outputs of models trained for such tasks?
- If yes, perform extensive experiments to assess the degree to which attention weights provide "meaningful explanations" for predictions
- Similar in essence to the sanity check paper experiment idea and design is similar

Background

- Attention methods have been shown to improve upon the performance of standard encoder-decoder architectures
- Intuitive figure demonstrating attention in machine translation:

- Global vs Local attention: Output of one "token" in the output is dependent on all the hidden units in a weighted fashion (Global) or only on a few of the hidden units (Local)
- Why Attention? To capture a much more holistic dependence on the output with respect to hidden states

Background

- TVD Total Variation Distance: $\text{TVD}(\hat{y}_1, \hat{y}_2) = \frac{1}{2} \sum_{i=1}^{|\mathcal{Y}|} |\hat{y}_{1i} \hat{y}_{2i}|.$
- Jensen Shannon Divergence: $JSD(P \parallel Q) = \frac{1}{2}D(P \parallel M) + \frac{1}{2}D(Q \parallel M)$ $M = \frac{1}{2}(P+Q)$
- For Correlation measurement : Kendal Tau
- Encoder Model:
 - Average simple
 - BiLSTM recurrent

Related Work

- Neural Machine Translation by Jointly Learning to Align and Translate -Bahdanau et al., 2014 (Attention Paper)
- A causal framework for explaining the predictions of black-box sequence-tosequence models. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing -David Alvarez-Melis and Tommi Jaakkola. 2017.
- An interpretable predictive model for healthcare using reverse time attention mechanism, Advances in Neural Information Processing Systems Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy Schuetz, and Walter Stewart.

Claim / Target Task

- Comparison with other techniques:
 - Correlation Between Attention and Feature Importance
 Measures does the attention weights have any correlation with the gradient-based methods of interpretability
- Modification of attention weights:
 - **Attention Permutation** Permuting the weights of the attention on hidden states and checking if it makes a difference
 - Adversarial Attention Adversarially computing new attention weights such that model predictions don't change a lot but attention weights change a lot.
- To perform these experiments over a variety of datasets on multiple tasks.
- https://successar.github.io/AttentionExplanation/docs/

Data Summary

Datasets used can be divided on the basis of the task:

- Binary text classification
 - Stanford Sentiment Treebank (SST)
 - IMDB Large Movie Reviews Corpus
 - Twitter Adverse Drug Reaction
 - 20 Newsgroups (Hockey vs Baseball).
 - AG News Corpus (Business vs World)
 - MIMIC ICD9 (Diabetes)
 - MIMIC ICD9 (Chronic vs Acute Anemia)
- Question Answering (QA)
 - CNN News Articles
 - o bAbI
- Natural Language Inference
 - SNLI dataset

An Intuitive Figure Showing WHY Claim

Proposed Solution

- **Experiment-1** Correlation between Attention Weights and Gradient/LOO
- Calculating the correlation:
 - Tau_g -> corr. of gradients wrt attention weights
 - Tau_LOO -> corr. of leave one out wrt attention weights

Algorithm 1 Feature Importance Computations

$$\begin{split} \mathbf{h} &\leftarrow \operatorname{Enc}(\mathbf{x}), \hat{\alpha} \leftarrow \operatorname{softmax}(\phi(\mathbf{h}, \mathbf{Q})) \\ \hat{y} &\leftarrow \operatorname{Dec}(\mathbf{h}, \alpha) \\ g_t \leftarrow |\sum_{w=1}^{|V|} \mathbb{1}[\mathbf{x}_{tw} = 1] \frac{\partial y}{\partial \mathbf{x}_{tw}}| , \forall t \in [1, T] \\ \tau_g \leftarrow \operatorname{Kendall} \tau(\alpha, g) \\ \Delta \hat{y}_t \leftarrow \operatorname{TVD}(\hat{y}(\mathbf{x}_{-t}), \hat{y}(\mathbf{x})) , \forall t \in [1, T] \\ \tau_{loo} \leftarrow \operatorname{Kendall} \tau(\alpha, \Delta \hat{y}) \end{split}$$

Proposed Solution

- Experiment-2
 - Permuting Attention Weights

Algorithm 2 Permuting attention weights $\mathbf{h} \leftarrow \operatorname{Enc}(\mathbf{x}), \hat{\alpha} \leftarrow \operatorname{softmax}(\phi(\mathbf{h}, \mathbf{Q}))$ $\hat{y} \leftarrow \operatorname{Dec}(\mathbf{h}, \hat{\alpha})$ $\hat{y} \leftarrow \operatorname{Dec}(\mathbf{h}, \hat{\alpha})$ for $p \leftarrow 1$ to 100 do $\alpha^p \leftarrow \operatorname{Permute}(\hat{\alpha})$ $\hat{y}^p \leftarrow \operatorname{Dec}(\mathbf{h}, \alpha^p)$ $\hat{y}^p \leftarrow \operatorname{Dec}(\mathbf{h}, \alpha^p)$ $\Delta \hat{y}^p \leftarrow \operatorname{TVD}[\hat{y}^p, \hat{y}]$ end for $\Delta \hat{y}^{med} \leftarrow \operatorname{Median}_p(\Delta \hat{y}^p)$

Proposed Solution

• Experiment 2

- Adversarial Attention "attention weights that differ as much as possible from the observed attention distribution and yet leave the prediction effectively unchanged."
- JS Divergence between any two categorical distributions irrespective of length) is bounded from above by 0.69.

AG News

Original:general motors and daimlerchrysler say they # qqq teaming up to develop hybrid technology for use in their vehicles . the two giant automakers say they have signed a memorandum of understanding

Adversarial: general motors and daimlerchrysler say they # qqq teaming up to develop hybrid technology for use in their vehicles . the two giant automakers say they have signed a memorandum of understanding . $\Delta \hat{y}$: 0.006

Experimental Results - Experiment 1

Figure 3: Mean difference in correlation of (i) LOO vs. Gradients and (ii) Attention vs. LOO scores using BiLSTM Encoder + Tanh Attention. On average the former is more correlated than the latter by $>0.2 \tau_{loo}$.

Figure 4: Mean difference in correlation of (i) LOO vs. Gradients and (ii) Attention vs. Gradients using BiLSTM Encoder + Tanh Attention. On average the former is more correlated than the latter by $\sim 0.25 \tau_a$.

Figure 5: Difference in mean correlation of attention weights vs. LOO importance measures for (i) Average (feed-forward projection) and (ii) BiLSTM Encoders with Tanh attention. Average correlation (vertical bar) is on average ~ 0.375 points higher for the simple feedforward encoder, indicating greater correspondence with the LOO measure.

Experimental Results - Experiment 2a

Figure 6: Median change in output $\Delta \hat{y}^{med}$ (x-axis) densities in relation to the max attention (max $\hat{\alpha}$) (y-axis) obtained by randomly permuting instance attention weights. Encoders denoted parenthetically. Plots for all corpora and using all encoders are available online.

Experimental Results - Experiment 2b

Figure 8: Densities of maximum JS divergences (-max JSD) (x-axis) as a function of the maxattention (y-axis) in each instance for obtained between original and adversarial attention weights.

Experimental Analysis

• **Experiment-1** : Correlation study

- Corr between LOO and Gradients is high
- Corr between Gradients and attention and LOO and attention is on the lower side from expected
- Corr of G/LOO vs attention for different encoders is different.
- Simple encoders have high corr.(Average) and complex (BiLSTM) have low corr.
- **Experiment-2a:** Perturbing attention weights
 - The change in output by perturbing attention weights is much lower than expected
- **Experiment-2b:** Adversarial attention
 - "one can identify adversarial attention weights associated with high JSD for a significant number of examples. This means that it is often the case that quite different attention distributions over inputs would yield essentially the same output.

Conclusion and Future Work

- Showed that there is much more research required in studying attention
- Attention in itself is not enough to explain the models
- The failure of explainability of BiLSTM over average encoders is much more concerning due to the fact that still complex models are not very well understood