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Motivation:

● Modern machine learning models, including random forests, deep neural
networks, and kernel methods, can produce high accuracy prediction in many
applications. However, the accuracy in prediction from such black box models,
comes at the cost of interpretability.

● Ease of interpretation is a crucial criterion when these tools are applied in areas
such as medicine, financial markets, and criminal justice
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Approaches for Interpreting Models:

● Model specific Interpretation: Make assumptions to the model and hence
are specific to the model itself. (Attention weights, smooth-grad, grad-CAM)

● Model Agnostic Interpretation: Making no assumptions about the
underlying model. Can be used in any ML model and is applied post-hoc. (Eg.
LIME, Shapley value)

● Instance-wise Interpretation: Yielding feature importance for each input
instance. (E.g. Saliency Map, CD)

● Model-level Interpretation: Yielding feature importance for the whole
model. (E.g. Weights of NN, Decision Rules for Decision Trees)

This study focuses on Model Agnostic and Instance-wise Interpretation.

Background:
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Shapley Value:

• Axiomatic characterization of a fair distribution of a total surplus from
all the players.

• Can be applied in to predictive models.

• Each feature is modeled as a player in the underlying game.

For quantifying the importance of a given feature index i for feature vector x
∈ Rd, we can compute importance score of feature i, vx({i}), on its own.

However, doing so ignores interactions between features, which are likely
to be very important in applications.

Background:
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Marginal Contribution: For a given subset S containing i, compute the
difference between the importance of all features in S, with and without i.

mx(S, i) : = vx(S) − vx(S \ {i})

In order to obtain a simple scalar measure for feature i, we need to aggregate 
these marginal contributions over all subsets that contain i.

Sk(i) denote the set of k-sized subsets that contain i.

Background:
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• Properties of Shapley Value:

• Challenge with computing Shapley values:

– The exact computation of the Shapley value φx(i) takes into account 
the interaction of feature i with all 2 d−1 subsets that contain i, 
thereby leading to computational difficulties.

Background:



Related Work:
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1. Lloyd S Shapley. (1953): A value for n-person games. Contributions to the
Theory of Games

1. Štrumbelj et al. (2010): An efficient explanation of individual classifications
using game theory.

1. Datta et al. (2017): Algorithmic transparency via quantitative input influence:
Theory and experiments with learning systems.

1. Lundberg et al. (2009): A unified approach to interpreting model predictions.

• Monte Carlo Approximation and Weighted linear regression.



Claim / Target Task:
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● Sampling-based approximations may suffer from high variance when the

number of samples to be collected per instance is limited.

● For large-scale predictive models, the number of features is often relatively large,

meaning that the number of samples required to obtain stable estimates can be

prohibitively large.

● Authors address this challenge in a model-based paradigm, where the

contribution of features to the response variable respects the structure of an

underlying graph.



Method:

9

● Associate features with the nodes of a graph. E.g. sequence data can be

associated with a line graph and grid graph for image data.

● Notations:

○ x ∈ Rd⇒ feature vectors

○ G = (V, E)⇒ Graph with nodes V and edges E ⊂ V x V

○ Each feature i is associated with a node i ∈ V

○ Edges represent interactions between features

○ dG(l, m)⇒ number of edges in shortest path joining l to m.

○ K-neighborhood⇒ Nk(i) : = {j ∈ V | dG(i, j) ≤ k}



Method:
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(a) Illustration of the k = 2 graph neighborhood N2(i) on the grid graph. All

nodes within the shaded gray triangle lie within the neighborhood N2(i).



Local Shapley (L-Shapley)

11

● Words distant have a weaker influence on the importance of a given

word in a document, and therefore have relatively less effect on the

Shapley score.

Original Formula:



Local Shapley (L-Shapley)
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● Coefficients of mx(S, i) are chosen to match the coefficients in the

definition of the Shapley value restricted to the neighborhood Nk(i).

● This controls the error under certain probabilistic assumption.

● The choice of the integer k is dictated by computational considerations.

● Evaluating all d L-Shapley scores on a line graph requires 22kd model

evaluations. (2 2k+1 per feature).

● A grid graph requires 24k*4kd function evaluations.



Connected Shapley (C-Shapley)

13

● Further reduces the complexity of approximating the Shapley value.

● Only look at the connected subsets.

○ It is not heartwarming or entertaining. It just sucks.

○ Subset “It not heartwarming,” rarely appears in real data and may

not make sense to a human or a model trained on real-world data.



Connected Shapley (C-Shapley)
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● Coefficients of mx(S, i) are a result of using Myerson value.

● The error between C-Shapley and the Shapley value can also be

controlled under certain statistical assumptions.

● For text data, C-Shapley is equivalent to only evaluating n-grams in a

neighborhood of the word to be explained.

● C-Shapley scores for all d features takes O(k2d) model evaluations on a

line graph.



Difference b/w L-Shapley and C-Shapley
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(b) A disconnected subset of N2(i) that is summed over in L-Shapley but not

C-Shapley.

(c) A connected subset of N2(i) that is summed over in both L-Shapley and C-

Shapley.



Approximation of Shapley value 
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1. The expected error between the L-Shapley estimate φˆkX(i) and the true

Shapley-value-based importance score φi(Pm, x) is bounded by 4ε:

EX|φˆkX(i) − φX(i)| ≤ 4ε.

1. The expected error between the C-Shapley estimate φˆkX(i) and the true 

Shapley-value-based importance score φi(Pm, x) is bounded by 6ε:

EX|φˆkX(i) − φX(i)| ≤ 6ε



Speeding Up Calculation:
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1. For considering the interaction of features in a large neighborhood Nk(i)

with a feature i, exponential complexity in k can become a barrier.

2. Sampling based on random permutation (Štrumbelj et. al.) of local

features may be used to alleviate the computational burden of L-Shapley.

3. A regression-based estimate of C-Shapley :

Where, X ∈ {0, 1}kd×d and a response vector F ∈ Rkd, where Xij = 1 if the

jth feature is included in the ith sample, and Fi = vx(Si), the score

function evaluated on the corresponding feature subset.



Problem Setting
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● Input:

○ Model

○ Instance

● Output:

○ A vector of importance score of the feature.

● The instance-wise property means that this vector, and hence the relative

importance of each feature, is allowed to vary across instances.



Experiments:
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● Task: Image Classification and Text Classification

● Baselines: Model Agnostic Methods

● KernelSHAP: Regression based approximation of Shapley.

● SampleShapley: Random sampling based approximation.

● LIME: Linear model to locally approximate the original model.

● Saliency Map: Image Data



Datasets for Text Classification:
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● IMDB Review ⇒ Word-CNN

● AG News ⇒ Char-CNN

● Yahoo! Answers ⇒ LSTM

L-Shapley ⇒ Interaction of each word i with the two neighboring words in N1(i)

C-Shapley ⇒ Regression-based version on all n-grams with n ≤ 4.



Results:
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● On IMDB with Word-CNN, L-Shapley achieves the best performance while LIME, KernelSHAP and C-
Shapley achieve slightly worse performance. 

● On AG’s news with Char-CNN, L-Shapley and C-Shapley both outperform other algorithms. 
● On Yahoo! Answers with LSTM, C-Shapley outperforms the rest of the algorithms by a large margin



Results:
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Importance scores produced by different Shapley-based methods on Example:
“It is not heartwarming or entertaining. It just sucks”.



Datasets for Image Classification:
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● MNIST

● CIFAR10



Evaluation:
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● SampleShapley

● KernelSHAP

● Saliency

● C_Shapley

● LIME and L-Shapley are not used for comparison.

● LIME uses superpixels instead of raw pixels.

● L-Shapley was not chosen because of evaluation constraints.

● For C-Shapley, applied regression-based version to evaluate all n×n image

patches with n ≤ 4.



Results:
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Interestingly, the top pixels chosen by C-Shapley visualize the “reasoning” of the model: more specifically, the 
important pixels to the model are exactly those which could form a digit from the opposite class. 



Results:
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● Pixels picked by C-Shapley concentrate around and inside the digits in MNIST. 



Results:
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● The C-Shapley and Saliency methods yield the most interpretable results in CIFAR10. In particular, C-
Shapley tends to mask the parts of head and body that distinguish deers and horses, and the human
riding the horse.



Conclusion:
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● Authors have proposed L-Shapley and C-Shapley for instance-wise feature

importance scoring, making use of a graphical representation of the data.

● Shown the superior performance of the proposed algorithms compared to other

methods for instance-wise feature importance scoring in text and image

classification.
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