Robust Attribution Regularization

By Jiefeng Chen Xi Wu Vaibhav Rastogi Yingyu Liang Somesh Jha

02/14/2019

Presenter: Zijie Pan https://qdata.github.io/deep2Read/

Motivation

- Deep Learning is treated as black box, which is too much to understand or interpret
- Robust attribution plays important fundamental role for humans in classification tasks, but only recently, draw attentions to ML area
- Lack of attention makes DL vulnerable to adversarial examples:
 - Brittle predictions: model robustness
 - Brittle attributions: Explanation robustness

Proposed Solution

- Add robust attribution regularization term in training
- RAR aims to regularize the training so the resulting model will have robust attributions that are not substantially changed under minimal input perturbations.

Preliminary Concept

- Attribution:

Compare the DNN output F(x) to what its output would have been if the input feature were xi were not active (replace by some information-less baseline value bi)

Formula :

$$A_i^F(x;b) = F(x) - F(x[x_i = b_i])$$

Preliminary Concept

- Axiom of Attribution:

- Completeness or Additivity: Sum of feature attribution equals to F(x)
- Sensitivity: For non-zero feature and
 F(x)≠0,attribution of that feature is not zero
- Implementation Variance: When two neural network compute the same mathematical function, regardless how differently they are implemented, the attributions for all features should be the same

Preliminary Concept

- Axiom of Attribution Cont.:

- Linearity: compose two NN,H = aF+bG, indicates attributions are the weighted sum
- Symmetry-Preserving: For any input x where the values for two symmetric features (interchange them does not change the function mathematically) are the same, the attributions should be the same.

Symmetric features Ex: F(x) = min(1,x1+x2)

Related Work

Based on proof from economic side knowledge(Friedman, Eric J et al..): Path Integrated Gradient method to calculate attribution satisfies all axioms except last one.

Path function: $x=g(\alpha)$. Infinite number of possible paths available The attribution of the feature at dimension i can be calculated as:

$$A^{F,\Pi}_i(x) = \int_0^1 \partial_i F(g(lpha)) rac{\partial g_i(lpha)}{\partial lpha} dlpha.$$

- Paper by Sundararajan et. al states that attribution using the Integrated Gradient along the **straight line** from the origin to x is the unique Path Method that also satisfies the last axiom.

uniformly scaling: $gi(\alpha) = \alpha xi$, so the derivative term equals xi and the function simplifies

to:

$$A^F_i(x) = x_i \int_0^1 \partial_i F(lpha x) dlpha$$

- The namer uses the general formulation

Claim / Target Task

- Using IG method to quantify attributions
- Robust Attribution Regularization:

$$\begin{array}{ll} \underset{\theta}{\operatorname{minimize}} & \underset{(\boldsymbol{x},y)\sim P}{\mathbb{E}}[\rho(\boldsymbol{x},y;\theta)] \\ \text{where } \rho(\boldsymbol{x},y;\theta) = \ell(\boldsymbol{x},y;\theta) + \lambda \max_{\boldsymbol{x}' \in N(\boldsymbol{x},\varepsilon)} s(\operatorname{IG}_{\boldsymbol{h}}^{\ell_y}(\boldsymbol{x},\boldsymbol{x}';r)) \\ \end{array}$$

- P: data distribution
- θ: Model parameter set
- λ : regularization parameter
- x: input
- x': perturbed input
- IG:Give the attribution of features respect to the changes of loss value (apply to intermediate layer h)
- s: size function

Formula Insight

- RAR gives principled generalizations of objective designed for robust predictions in both uncertainty set model and distributional robustness model
- Uncertainty set model:
 - (Madry et al) λ =1 and size function is Sum() and L. Norm bounded perturbation $\rho(x,y;\theta) = \max_{x' \in N(x,\varepsilon)} \ell(x',y;\theta)$.
 - Input gradient regularization $\rho(\boldsymbol{x}, y; \theta) = \ell(\boldsymbol{x}, y; \theta) + \lambda \|\nabla_{\boldsymbol{x}} \ell(\boldsymbol{x}, y; \theta)\|_q^q$.
 - Regularization by attribution of the loss output:

$$\rho(\boldsymbol{x}, y; \theta) = \ell(\boldsymbol{x}, y; \theta) + \max_{\boldsymbol{x}' \in N(\boldsymbol{x}, \varepsilon)} \{ |\ell_y(\boldsymbol{x}') - \ell_y(\boldsymbol{x})| \}$$

- Distributional Robustness Model
 - Wasserstein prediction robustness

$$\min_{\theta} \left\{ \mathbb{E}_{P}[\ell(P;\theta)] + \lambda \sup_{Q;M \in \prod(P,Q)} \left\{ \mathbb{E}_{M=(Z,Z')} \left[d_{\mathrm{IG}}(Z,Z') - \gamma c(Z,Z') \right] \right\} \right\}$$

Formula Insight Cont.

- for 1-layer neural networks, RAR naturally degenerates to max-margin training.

Implementation

- IG-NORM: Size function is L1-Norm $\min_{\theta} \mathbb{E} \left[\ell(\boldsymbol{x}, y; \theta) + \lambda \max_{\boldsymbol{x}' \in N(\boldsymbol{x}, \varepsilon)} \| \operatorname{IG}^{\ell_y}(\boldsymbol{x}, \boldsymbol{x}') \|_1 \right]$
- IG-SUM-NORM: $s(\cdot) = sum(\cdot) + \beta^*L1-Norm(\cdot)$

$$\underset{\theta}{\text{minimize}} \quad \underset{(\boldsymbol{x},y)\sim P}{\mathbb{E}} \left[\max_{\boldsymbol{x}' \in N(\boldsymbol{x},\varepsilon)} \left\{ \ell(\boldsymbol{x}',y;\theta) + \beta \| \operatorname{IG}^{\ell_y}(\boldsymbol{x},\boldsymbol{x}') \|_1 \right\} \right]$$

- SGD Training
- Attack: PDG attack

Data Summary

- MNIST, Fashion-MNIST, GTSRB, Flower
- Evaluation: Accuracy+Kendall's tau rank order correlation+Top-k intersection

Experimental Results

Dataset	Approach	Nat Acc.	Adv Acc.	TopK Inter.	Rank Corr.
MNIST	NATURAL	99.17%	0.00%	46.61%	0.1758
	Madry et al.	98.40%	92.47%	62.56%	0.2422
	IG-NORM	98.74%	81.43%	71.36%	0.2841
	IG-SUM-NORM	98.34%	88.17%	72.45%	0.3111
Fashion-MNIST	NATURAL	90.86%	0.01%	39.01%	0.4610
	Madry et al.	85.73%	73.01%	46.12%	0.6251
	IG-NORM	85.13%	65.95%	59.22%	0.6171
	IG-SUM-NORM	85.44%	70.26%	72.08%	0.6747
GTSRB	NATURAL	98.57%	21.05%	54.16%	0.6790
	Madry et al.	97.59%	83.24%	68.85%	0.7520
	IG-NORM	97.02%	75.24%	74.81%	0.7555
	IG-SUM-NORM	95.68%	77.12%	74.04%	0.7684
Flower	NATURAL	86.76%	0.00%	8.12%	0.4978
	Madry et al.	83.82%	41.91%	55.87%	0.7784
	IG-NORM	85.29%	24.26%	64.68%	0.7591
	IG-SUM-NORM	82.35%	47.06%	66.33%	0.7974

Experimental Results

- Compared with naturally trained model, RAR only sacrifice small drops on testing accuracy. (Right thing to do, not learning spurious relationships)
- But gives robust predictions and robust attribution

Experimental Results

 Very Interesting: RAR leads to much human aligned attributions
 We can explicitly see the highlighted attributions are flowershaped.

Top-1000 Intersection: 0.1% Top Kendall's Correlation: 0.2607 Ken

Top-1000 Intersection: 58.8% Kendall's Correlation: 0.6736

Top-1000 Intersection: 60.1% Kendall's Correlation: 0.6951

Model to learn robust attributions and connect to explainable model.

Using robust attribution training as feature extractions and feed into looks like model