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Motivation
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Ø Deep neural networks (DNNs) are vulnerable to adversarial
examples, which are carefully crafted instances aiming to cause
prediction errors for DNNs.

Ø Recent defensing technique on adversarial examples is not
enough: examining local neighborhoods in the input space of
DNN models, previous work has limited what regions to
consider, focusing either on low-dimensional subspaces or small
balls.



Background

Ø Adversarial examples: are slightly perturbed versions of
correctly classified input instances, which are misclassified.

Ø The amount of perturbation used to generate an adversarial
example from the original input instance is called the example’s
distortion.

Defense against adversarial examples:
Ø Adversarial training with examples generated by projected
gradient descent (PGD);

Ø Region classification, takes the majority prediction on several
slightly perturbed versions of an input, uniformly sampled from
a hypercube around it. In contrast, classifying only the input
instance can be referred to as point classification.



Related Work
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• Liu et al. (2017) and Tramèr et al. (2017) examine limited regions around
benign samples to study why some adversarial examples transfer across
different models.

• Madry et al. (2017) explore regions around benign samples to validate the
robustness of an adversarialy trained model.

• Tabacof& Valle(2016) examine regions around adversarial examples to
estimate the examples’ robustness to random noise.

• Cao & Gong (2017) determine that considering the region around an input
instance produces more robust classification than looking at the input instance
alone as a single point.

Limitations:
• focus on low-dimensional subspaces around a model’s gradient direction.
• explore many directions, but they focus on a small ball.



Claim / Target Task
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Information from larger neighborhoods—both in more
directions and at greater distances—will better help us
understand adversarial examples in high-dimensional
datasets.



An Intuitive Figure Showing WHY Claim
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No simple threshold on any one of these statistics accurately separates 
benign examples (blue) from OPT MARGIN examples (green).



Proposed Solution

uDemonstrate OPT-MARGIN, a new attack that evades region
classification systems with low-distortion adversarial examples.

uAnalyze a larger neighborhood around input instances by looking
at properties of surrounding decision boundaries, namely the
distances to the boundaries and the adjacent classes.

uTrain a classifier to differentiate the decision boundary
information that comes from different types of input instances



Implementation

Dataset:  

§ MNIST, consisting of black-and-white handwritten digits (LeCun, 1998)

§ CIFAR-10, consisting of small color pictures (Krizhevsky & Hinton, 2009)

§ a small subset of ImageNet (additionally)

Model Training:

§ MNIST: CNN, both normal and with PGD -L∞ perturbation limit of 0.3

§ CIFAR-10: ResNet, bot normal and with PGD -L∞ perturbation limit of 8

New decision boundary classifier:

8



Opt-margin Approach

v 20 = 0



Data Summary
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Data Summary
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Experimental Analysis
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Experimental Analysis

Ø No simple threshold on any one of these statistics accurately separates benign examples (blue) 

from OPTMARGIN 

Ø The effect of PGD adversarial training on the robustness of benign examples to random 

perturbations is not universally beneficial nor harmful.
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Experimental Analysis
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Adversarial examples generated by OPT MARGIN and FGSM are much harder to 
distinguish from benign examples in this metric.



Experimental Results
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Experimental Represent
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Table 1: Success rate(%) and average distortion of 
adversarial examples generated by OptMargin attack 



Experimental Represent
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Normal Adv. tr. Normal Adv. tr. Normal Adv. tr. Normal Adv. tr.

Benign 99% 98% 99% 98% 100% 100% 100% 100%
OptMargin 4% 7% 0% 0% 4.28% 4.78% 4.16% 4.72%

Table 2: Accuracy of region classification and point classification



Experimental Represent
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Figure 1: Decision boundary distance from single sample images

Benign

OptMargin



Experimental Represent
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Figure 2: Minimum and median decision boundary distances for a sample of images: 
blue(benign), Green(OptMargin)

MNIST CIFAR10



Conclusion and Future Work

u benefits of examining large neighborhoods around a given input in input
space

u We demonstrated an effective OPTMARGIN attack against a region
classification defense, which only considered a small ball of the input space
around a given instance.

u The comprehensive information about surrounding decision boundaries
reveals there are still differences between our robust adversarial examples
and benign examples.

u It remains to be seen how attackers might generate adversarial examples
that better mimic benign examples’ surrounding decision boundaries.
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What does each member do?

u Read the paper
u Download the code from github
u Read the code to match the code with the paper
u Represent the experiment (running for more than a month):

l OptMargin attack
l Decision boundary analysis
l Train a classifier to defend the attack (not achieved)

u Write scripts to analysis collected experiment data
u Prepare the presentation and jupyter notebook
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