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Motivation - structured prediction
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Y is a scalar (Regression)

Y is a class (Classification)

Y is ....

Vinyals, et.al., 2015



Motivation
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❖ Introducing structural assumptions into neural network(NN) can make 
learning more easier. [C. Ciliberto et al., 2018]

❖ Current methods add structure models on top of NN can only capture 
simple type of interactions. [J. Tompson el al., 2014; L.-C. Chen et al., 2015]

❖ Current methods include structured prediction inside NN (e.g. SPENs) 
are hard to optimize. [D. Belanger and A. McCallum 2016]

❖ Finding a method which is able to incorporate structure assumptions of 
data while retaining effectiveness. 

Credit prof. Lampert’s slides



Background

❖ A lot of tasks require predicting structured output rather than a simple 
scalar or classes
➢ Generating natural language or image, sequential tagging, semantic 

segmentation, etc.
❖ A lot of methods have been proposed to address this problem

➢ Structured SVM and Structured Logistic Regression (i.e. CRF)
❖ Deep NNs have been favoured in recent year, after achieving great 

results on various tasks
❖ Some efforts have been putting in addressing structure prediction 

problem for NNs
➢ Show great promises of this direction
➢ But can only model superficial interactions between output variables 

or hard to optimize
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Related Work
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❖ Structured Prediction in the old days
➢ Augment linear classifiers (e.g. SVM, LR) [T. Finley et al., 2008; J. Lafferty et al., 2001]

❖ Structured Prediction in the era of NN
➢ NN has a lot of potential to model structures [A. Krizhevsky et al., 2012]
➢ Autoregressive Models

■ Recurrent neural network to model the structure of sequential output
■ Based on the ability of the neural net to model the conditional distribution

➢ Structured Prediction Energy Networks (SPENs) [Belanger and McCallum, 2016]
■ Automatically learning the structure of deep nets leads to improved 

results
■ Optimization of the proposed approach remains challenging due to the 

non-convexity of NNs.
➢ Deep value networks [Gygli et al., 2017]

■ Using training objective inspired by value based reinforcement learning



Claim / Target Task
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❖ We represent output variables as an intermediate
structured layer in the middle of the neural architecture.

❖ We discuss a rigorous formulation for structure inside
deep nets using a Lagrangian framework.

Address the optimization 
problem.

Capture nonlinear interactions 
between output variables.



An Intuitive Figure Showing WHY Claim
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[D. Belanger et 
al., 2016]



Problem

Ignore correlations between pair of variables

NP-hard, low-order locality [S. E. Shimony, 1994]
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Proposed Solution

❖ Non-linear Structured Deep Networks

● Inference

Simplify the discrete optimization problem,
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Proposed Solution

● Learning

Loss augmented inference

Loss augmented inference
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Implementation
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❖ Inference Procedure

better convergence in practice by averaging  over the last n/2 
iterates of y and 𝞴



Implementation
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❖ Learning Procedure

● A minibatch of data at every iteration
● Every round of inference is followed by an update of the weights 

of the model, which is accomplished via gradient descent



Data Summary

Exp1: Word Recognition

● A synthetic word recognition dataset
● Constructed by taking a list of 50 common five-letter English words and 

rendering each letter as a 28x28 pixel image.
● Select a random image of each letter from the Chars74K dataset [Campos et 

al., 2009], randomly rotate, shift, and scale them, and then insert them into 
random background patches with high intensity variance

● Task: identify each word from the five letter images
● The training, validation, and test sets for these experiments consist of 1,000, 

200, and 200 words
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Data Summary

Exp2: Multilabel classification

• Binary feature vectors (#1836 )
• 159 possible labels
• 500 pairs chosen for structured 

models
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Exp3: Image tagging

● MIRFLICKR25k dataset [Huiskes et al., 2008]

● 25,000 images taken from Flickr
● Each assigned some subset of a possible 24 tags
● train/development/test sets: 10,000/5,000/10,000 images



Data Summary

Exp4: Semantic segmentation

● Weizmann Horses database [Borenstein et al., 2002]

● 328 images of horses paired with segmentation masks
● train/validation/test : 196/66/66 images
● scale the input images: 224x224 pixels for image, 64x64 pixels for masks
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Experimental Results

❖ Tasks
➢ Word recognition
➢ Multilabel classification
➢ Image tagging
➢ Semantic segmentation

❖ Models
➢ Unary: a deep network model containing containing unary potentials
➢ DeepStruct: a deep structured model containing pairwise potentials
➢ LinearTop: a structured deep model with linear output transformations
➢ NLTop: a structured deep model with nonlinear output transformations
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Experimental Results

❖ Word Recognition
➢ Identify English words from images of letters

➢ Two different graphs in structured models 

■ Chain: adjacent letters are connected

■ Second-order: connecting letters two positions away

➢ Measures

■ Character accuracy

■ Word accuracy: count the accuracy every five words
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Reproduced Results
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word accuracy Character accuracy

Chain: (T,H), (H,E), (E,R), (R,E)
Second-Order: (T,E), (H,R), (E,E)



Experimental Results

❖ Multilabel Classification
➢ Dataset: Bibtex 

➢ Most frequent label pairs are chosen for the structured models
■ 500 pairs for Bibtex

➢ Use macro-averaged F1 scores as the measure
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Models Bibtex

Unary 44.0

DeepStruct & NLStruct Comparably

SPEN 42.4



Reproduced Results
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❖ Multilabel Classification
➢ Dataset: Bibtex, #Train: 4836   #Test: 2515

➢ Loss: Cross Entropy

➢ Unary model: 

two-layer perceptrons with ReLU nonlinearities and 318 units

➢ Deepstruct:

constrain pairwise potentials so that W0,0 =W1,1 and W0,1 =W1,0

➢ Experiment results 

Precision Recall F1

Unary 0.4066 0.4800 0.4403

DeepStruct 0.4208 0.5184 0.4645



Experimental Results

❖ Image Tagging
➢ Fully connected pairwise graph is used as the structure

■ binary node -> a label

■ edge -> connecting labels

➢ SPENInf: SPEN-like inference procedure

➢ DeepStruct++

■ Add 2-layer perceptrons to DeepStruct
■ 1.8 times more parameters than NLTop
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Reproduced Results
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❖ Image Tagging

➢ Unary classifier: pre-trained Alexnet model provided by PyTorch 

Hyperparameters

Optimizer SGD

Learning rate 1e-4

Batch size 100

Epochs 50

● Train loss: 1.7146, Val loss: 2.5042
● Test loss: 2.9804



Reproduced Results
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❖ Image Tagging

➢ DeepStruct
● Train loss: 2.0368, Val loss: 2.7134 
● Test loss: 2.7762Hyperparameters

Optimizer SGD

Learning 
rate

5e-5

Batch size 100

Epochs 200

Hidden size 318

activation hardtanh



Reproduced Results
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Hyperparameters

Optimizer SGD

Learning 
rate

1e-5

Batch size 100

Epochs 100

Hidden size 1152

activation hardtanh

➢ DeepStruct++
● Train loss: 3.6605, Val loss: 3.6944
● Test loss: 3.7825

➢ SPENInf
● Train loss: 2.1934, Val loss: 2.788 
● Test loss:2.8611 

➢ NLTop
● Train loss: 2.0067, Val loss: 2.2627
● Test loss: 2.4950



Reproduced Results
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➢ Results analysis

● Unary classifier converges fast and performs well

● The reproduced results are basically consistent with the experimental 

results in this paper

● Adding structure improves a non-structured model, and NLTop can 

capture global structure to further improve the performance

● It is difficult to achieve the state-of-the-art performance in this paper

(too many hyperparameters, too much time to train 20+ h/100 epochs) 



Experimental Results

❖ Semantic Segmentation
➢ Weizmann Horses database

■ 328 = 196 + 66 + 66
■ No way to train from scratch
■ Use AlexNet pretrained on ImageNet

● Remove first MaxPool
● Change stride of second MaxPool (2 to 1) 

➢ Evaluation metrics
■ Intersection over Union (IoU)
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Reproduced Results
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❖ Semantic Segmentation
➢ Hyper-parameter searching

■ {optimizer, learning_rate, lr_scheduler, mp_eps, activation, … ...}
➢ Unary model is already hard to tune

■ Performed 30+ experiments
■ Track parameter learning rate and gradient changes

➢ The DeepStruct model take 0.5 hour to finish 1 epoch
■ Once encountered infinite loop when saving model

➢ The NLTop model need to take the above two as input, thus block by 
the DeepStruct part.

Model Train Validation Testing

Unary 65.827 64.832 60.883

DeepStruct 32.419 32.339 32.162

NLTop - - -



Reproduced Results

28Sample prediction in development set from a IoU=53 model



Reproduced Results

29Sample prediction in development set from a IoU=65 model



Experimental Analysis

❖ Adding structure improves model performance (DeepStruct vs 
unary)

❖ Adding implicit structure through output transformations improves 
an explicitly structured model (NLTop, LinearTop vs DeepStruct)

❖ Nonlinear transformation can get further improvement (NLTop vs 
LinearTop) 

❖ Improvement in NLTop is not from increased number of parameters 
(NLtop vs DeepStruct++)
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Conclusion and Future Work

❖ Conclusion
➢ Proposed a framework that implicitly models higher-order 

structure as an intermediate layer in the deep net
➢ Proposed an optimization framework which retains applicability of 

existing inference engines
➢ Obtained performance improvement on a variety of tasks

❖ Future Work
➢ Other possible architectures of the output transformation network
➢ Other methods of solving inference
➢ Accessing the applicability on tasks having variable sized outputs
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Team Cooperation
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❖ Paper discussion

❖ Slides

❖ Jupyter notebook

❖ Experiment:

➢ Word Recognition: Guangtao Zheng

➢ Multilabel Classification: Wenbo Pang

➢ Image Tagging: Hanjie Chen

➢ Semantic Segmentation: Sanxing Chen
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