C. Graber, O. Meshi, A. Schwing. Deep structured prediction with nonlinear output transformations. In Advances in Neural Information Processing Systems, 2018, pp. 6320-6331.

UVA CS 6316: Machine Learning : 2019 Fall Course Project: Deep2Reproduce @

https://github.com/qiyanjun/deep2reproduce/tree/master/2019Fall

Deep Structured Prediction with Nonlinear Output Transformations

Reproduced By:

Guangtao Zheng, Hanjie Chen, Sanxing Chen, Wenbo Pang

(gz5hp, hc9mx, sc3hn, wp6ju) Dec 5, 2019

Motivation - structured prediction

Y is a scalar (Regression)

$$f: \mathcal{X} \to \mathcal{Y}$$
. Y is a class (Classification)
Y is

John has a dog . \rightarrow (S (NP NNP)_{NP} (VP VBZ (NP DT NN)_{NP})_{VP} .)_S

2

Motivation

- Introducing structural assumptions into neural network(NN) can make learning more easier. [C. Ciliberto et al., 2018]
- Current methods add structure models on top of NN can only capture simple type of interactions. [J. Tompson el al., 2014; L.-C. Chen et al., 2015]
- Current methods include structured prediction *inside NN* (e.g. SPENs) are hard to optimize. [D. Belanger and A. McCallum 2016]
- Finding a method which is able to incorporate structure assumptions of data while retaining effectiveness.

Background

- A lot of tasks require predicting structured output rather than a simple scalar or classes
 - Generating natural language or image, sequential tagging, semantic segmentation, etc.
- ✤ A lot of methods have been proposed to address this problem
 - Structured SVM and Structured Logistic Regression (i.e. CRF)
- Deep NNs have been favoured in recent year, after achieving great results on various tasks
- Some efforts have been putting in addressing structure prediction problem for NNs
 - ➤ Show great promises of this direction
 - But can only model superficial interactions between output variables or hard to optimize

4

Related Work

- Structured Prediction in the old days
 - > Augment linear classifiers (e.g. SVM, LR) [T. Finley et al., 2008; J. Lafferty et al., 2001]
- Structured Prediction in the era of NN
 - > NN has a lot of potential to model structures [A. Krizhevsky et al., 2012]
 - ➤ Autoregressive Models
 - Recurrent neural network to model the structure of sequential output
 - Based on the ability of the neural net to model the conditional distribution
 - Structured Prediction Energy Networks (SPENs) [Belanger and McCallum, 2016]
 - Automatically learning the structure of deep nets leads to improved results
 - Optimization of the proposed approach remains challenging due to the non-convexity of NNs.
 - Deep value networks [Gygli et al., 2017]
 - Using training objective inspired by value based reinforcement learning

Claim / Target Task

We represent output variables as an intermediate structured layer in the middle of the neural architecture.

---- Capture nonlinear interactions
 between output variables.

We discuss a rigorous formulation for structure inside deep nets using a Lagrangian framework.

Address the optimization problem.

An Intuitive Figure Showing WHY Claim

Problem

♦ $x = (x_1, ..., x_K)$ denote the multi-variate output space with $x_k \in X_k, k \in \{1, ..., K\}$ indicating a single variable.

 $x^* = \arg \max_{x \in \mathcal{X}} F(x, c, w)$

► Classical deep networks: $F(x, c, w) = \sum_{k=1}^{K} f_k(x_k, c, w)$

Ignore correlations between pair of variables

Structured deep networks: $F(x, c, w) = \sum_{r \in \mathcal{R}} f_r(x_r, c, w)$

NP-hard, low-order locality [S. E. Shimony, 1994]

Proposed Solution

Non-linear Structured Deep Networks

$$F(x,c,w) = T(c,H(x,c,w),w)$$

H is a vector where each entry represents the score $f_k(x_k, c, w)$

• Inference

$$\max_{x \in \mathcal{X}, y} T(c, y, w) \quad s.t. \quad y = H(x, c, w)$$

Introduce Lagrange multipliers λ ,

$$\min_{\lambda} \left(\max_{y} \{T(c, y, w) - \lambda^{T} y\} + \max_{x \in \mathcal{X}} \lambda^{T} H(x, c, w) \right)$$

Simplify the discrete optimization problem,

$$\min_{\mu} \left(\min_{\lambda} \left(\max_{y} \{T(c, y, w) - \lambda^{T} y\} + H^{D}(\mu, c, \lambda, w) \right) \right)$$

 $H^{D}(\mu, c, \lambda, w)$ is the relaxed dual objective.

Proposed Solution

• Learning

$$\min_{w} \sum_{(x,c)\in\mathcal{D}} \max_{\hat{x}\in\hat{x}} \{F(\hat{x},c,w) + L(x,\hat{x})\} - F(x,c,w)$$

$$\text{Loss augmented inference}$$

$$\Rightarrow \min_{w} \frac{C}{2} ||w||_{2}^{2} + \sum_{(x,c)\in\mathcal{D}} \left(\max_{\hat{x}\in\hat{x}} \{T(c,H(\hat{x},c,w),w) + L(x,\hat{x})\} - T(c,H(x,c,w),w) \right)$$

$$\text{Loss augmented inference}$$

Implementation

Inference Procedure

Algorithm 1 Inference Procedure

1: Input: Learning rates $\alpha_y, \alpha_\lambda; y_0; \lambda_0$; number of iterations n 2: $\mu^* \leftarrow \operatorname{argmin}_{\hat{\mu}} H^D(\hat{\mu}, c, \lambda, w)$ 3: $\bar{\lambda} \Leftarrow \lambda_0$ 4: $y_1 \Leftarrow y_0$ 5: for i = 1 to n do repeat 6: $y_i \leftarrow \frac{1}{\alpha_y} \left(y_i - y_{i-1} + \alpha_y \bar{\lambda} \right) - \nabla_y T(c, y, w)$ 7: until convergence 8: $\lambda_i \Leftarrow \lambda_{i-1} - \alpha_\lambda \left(\nabla_\lambda H^D(\mu^*, c, \lambda, w) - y_i \right)$ 9: $\overline{\lambda} = 2\lambda_i - \lambda_{i-1}; \ y_{i+1} \Leftarrow y_i$ 10: 11: end for 12: $\lambda \Leftarrow \frac{2}{n} \sum_{i=n/2}^{n} \lambda_i$; $y \Leftarrow \frac{2}{n} \sum_{i=n/2}^{n} y_i$ 13: $\mu \Leftarrow \operatorname{argmin}_{\hat{\mu}} H^D(\hat{\mu}, c, \bar{\lambda}, w)$ 14: **Return:** μ , $\dot{\lambda}$, y

better convergence in practice by averaging over the last n/2 iterates of y and $\pmb{\lambda}$

Implementation

Learning Procedure

Algorithm 2 Weight Update Procedure 1: **Input:** Learning rate α , \hat{y} , $\hat{\lambda}$, and \mathcal{D} 2: for i = 1 to *n* do 3: q = 0for every datapoint in a minibatch do 4: $\hat{x} \Leftarrow$ Inference in Algorithm 1 (adding $L(x, \hat{x})$) 5: $g \leftarrow g + \nabla_w \left(T(c, H(\hat{x}, c, w), w) - T(c, H(x, c, w), w) \right)$ 6: end for 7: $w \Leftarrow w - \alpha \left(Cw + g \right)$ 8: 9: end for

- A minibatch of data at every iteration
- Every round of inference is followed by an update of the weights of the model, which is accomplished via gradient descent

Data Summary

Exp1: Word Recognition

- A synthetic word recognition dataset
- Constructed by taking a list of 50 common five-letter English words and rendering each letter as a 28x28 pixel image.
- Select a random image of each letter from the Chars74K dataset [Campos et al., 2009], randomly rotate, shift, and scale them, and then insert them into random background patches with high intensity variance
- Task: identify each word from the five letter images
- The training, validation, and test sets for these experiments consist of 1,000, 200, and 200 words

(a) Word recognition datapoints

Data Summary

Exp2: Multilabel classification

- Binary feature vectors (#1836)
- 159 possible labels
- 500 pairs chosen for structured models

dataset	Bibtex
binary feature vectors # possible labels	159
# pairs of most frequent label pairs	500

Exp3: Image tagging

- MIRFLICKR25k dataset [Huiskes et al., 2008]
- 25,000 images taken from Flickr
- Each assigned some subset of a possible 24 tags
- train/development/test sets: 10,000/5,000/10,000 images

Data Summary

Exp4: Semantic segmentation

- Weizmann Horses database [Borenstein et al., 2002]
- 328 images of horses paired with segmentation masks
- train/validation/test : 196/66/66 images
- scale the input images: 224x224 pixels for image, 64x64 pixels for masks

(b) Segmentation datapoints

Experimental Results

Tasks

- ➤ Word recognition
- Multilabel classification
- Image tagging
- Semantic segmentation

Models

- > **Unary**: a deep network model containing containing *unary* potentials
- DeepStruct: a deep structured model containing *pairwise* potentials
- LinearTop: a structured deep model with *linear* output transformations
- NLTop: a structured deep model with *nonlinear* output transformations

Experimental Results

Word Recognition

- Identify English words from images of letters
- ➤ Two different graphs in structured models
 - Chain: adjacent letters are connected

- Second-order: connecting letters two positions away
- ➤ Measures
 - Character accuracy
 - Word accuracy: count the accuracy every five words

Table 1: Results for word recognition experiments. The two numbers per entry represent the word and character accuracies, respectively.

	Chain			Second-order				
	Ti	rain	Т	<i>`est</i>	Ti	rain	Т	est
Unary	0.003	0.2946	0.000	0.2350				
DeepStruct	0.077	0.4548	0.040	0.3460	0.084	0.4528	0.030	0.3220
LinearTop	0.137	0.5308	0.085	0.4030	0.164	0.5386	0.090	0.4090
NLTop	0.156	0.5464	0.075	0.4150	0.242	0.5828	0.140	0.4420

T H E R E

Unary:['S', 'S', 'E', 'R', 'E'] DeepStruct (Chain):['S', 'S', 'E', 'R', 'E'] DeepStruct (Second-Order):['S', 'S', 'E', 'E', 'E'] LTOP (Chain):['T', 'H', 'E', 'R', 'E'] LTOP (Second-Order):['T', 'H', 'R', 'E', 'E'] NLTOP (Chain):['T', 'H', 'E', 'R', 'E']

Chain: (T,H), (H,E), (E,R), (R,E) Second-Order: (T,E), (H,R), (E,E)

word accuracy		Ch	lain Ch	haracter	accuracy	Second	l-Order		
		Train		Test		Train		Test	
	Unary	0	0.4626	0	0.2970	N/A	N/A	N/A	N/A
	DeepStruct	0.2710	0.6760	0.0700	0.3990	0.2580	0.6628	0.0650	0.3750
	LinearTop	0.2810	0.6980	0.1100	0.4770	0.3000	0.6940	0.0750	0.4340
	NLTop	0.2370	0.6342	0.0900	0.4370	0.2820	0.6432	0.115	0.4300

Experimental Results

Multilabel Classification

- ➤ Dataset: Bibtex
- Most frequent label pairs are chosen for the structured models
 - 500 pairs for Bibtex
- ➤ Use macro-averaged F1 scores as the measure

Models	Bibtex
Unary	44.0
DeepStruct & NLStruct	Comparably
SPEN	42.4

Multilabel Classification

- ➤ Dataset: Bibtex, #Train: 4836 #Test: 2515
- ➤ Loss: Cross Entropy
- ➤ Unary model:

two-layer perceptrons with ReLU nonlinearities and 318 units

➤ Deepstruct:

constrain pairwise potentials so that $W_{0,0} = W_{1,1}$ and $W_{0,1} = W_{1,0}$

➤ Experiment results

	Precision	Recall	F1
Unary	0.4066	0.4800	0.4403
DeepStruct	0.4208	0.5184	0.4645

Experimental Results

Image Tagging

- Fully connected pairwise graph is used as the structure
 - binary node -> a label
 - edge -> connecting labels
- SPENInf: SPEN-like inference procedure
- > DeepStruct++
 - Add 2-layer perceptrons to DeepStruct
 - 1.8 times more parameters than NLTop

		Train	Validation	Test
Un	ary	1.670	2.176	2.209
Dee	epStruct	1.135	2.045	2.045
Dee	epStruct++	1.139	2.003	2.057
SPI	ENInf	1.121	2.016	2.061
NĽ	Гор	1.111	1.976	2.038

Table 2: Results for image tagging experiments.All values are hamming losses.

$$ext{HammingLoss} = rac{1}{N}\sum_{i=1}^{N}rac{ ext{XOR}(Y_{i,j},P_{i,j})}{L}$$

Image Tagging

Unary classifier: pre-trained Alexnet model provided by PyTorch

Hyperparameters			
Optimizer	SGD		
Learning rate	1e-4		
Batch size	100		
Epochs	50		

- Train loss: 1.7146, Val loss: 2.5042
- Test loss: 2.9804

Image Tagging

➤ DeepStruct

Hyperparameters			
Optimizer	SGD		
Learning rate	5e-5		
Batch size	100		
Epochs	200		
Hidden size	318		
activation	hardtanh		

Train loss: 2.0368, Val loss: 2.7134
Test loss: 2.7762

DeepStruct++

- Train loss: 3.6605, Val loss: 3.6944
- Test loss: 3.7825

➤ SPENInf

- Train loss: 2.1934, Val loss: 2.788
- Test loss:2.8611

➤ NLTop

- Train loss: 2.0067, Val loss: 2.2627
- Test loss: 2.4950

Hyperparameters			
Optimizer	SGD		
Learning rate	1e-5		
Batch size	100		
Epochs	100		
Hidden size	1152		
activation	hardtanh		

➤ Results analysis

- Unary classifier converges fast and performs well
- The reproduced results are basically consistent with the experimental results in this paper
- Adding structure improves a non-structured model, and NLTop can capture global structure to further improve the performance
- It is difficult to achieve the state-of-the-art performance in this paper (too many hyperparameters, too much time to train 20+ h/100 epochs)

Experimental Results

Semantic Segmentation

- > Weizmann Horses database
 - 328 = 196 + 66 + 66
 - No way to train from scratch
 - Use AlexNet pretrained on ImageNet
 - Remove first MaxPool
 - Change stride of second MaxPool (2 to 1)
- \succ Evaluation metrics
 - Intersection over Union (IoU)

Table 3: Results for segmentation experiments. All values are mean intersection-over-union

	Train	Validation	Test
Unary	0.8005	0.7266	0.7100
DeepStruct	0.8216	0.7334	0.7219
SPENInf	0.8585	0.7542	0.7525
NLTop	0.8542	0.7552	0.7522
Oracle	0.9260	0.8792	0.8633

Semantic Segmentation

- ➤ Hyper-parameter searching
 - {optimizer, learning_rate, lr_scheduler, mp_eps, activation,}
- Unary model is already hard to tune
 - Performed 30+ experiments
 - Track parameter learning rate and gradient changes
- ➤ The DeepStruct model take 0.5 hour to finish 1 epoch
 - Once encountered infinite loop when saving model
- The NLTop model need to take the above two as input, thus block by the DeepStruct part.

Model	Train	Validation	Testing
Unary	65.827	64.832	60.883
DeepStruct	32.419	32.339	32.162
NLTop	-	-	-

Sample prediction in development set from a IoU=53 model

Sample prediction in development set from a IoU=65 model

Experimental Analysis

- Adding structure improves model performance (DeepStruct vs unary)
- Adding implicit structure through output transformations improves an explicitly structured model (NLTop, LinearTop vs DeepStruct)
- Nonlinear transformation can get further improvement (NLTop vs LinearTop)
- Improvement in NLTop is not from increased number of parameters (NLtop vs DeepStruct++)

Conclusion and Future Work

Conclusion

- Proposed a framework that implicitly models higher-order structure as an intermediate layer in the deep net
- Proposed an optimization framework which retains applicability of existing inference engines
- Obtained performance improvement on a variety of tasks

Future Work

- > Other possible architectures of the output transformation network
- > Other methods of solving inference
- Accessing the applicability on tasks having variable sized outputs

Team Cooperation

- Paper discussion
- Slides
- Jupyter notebook
- Experiment:
 - Word Recognition: Guangtao Zheng
 - Multilabel Classification: Wenbo Pang
 - ➤ Image Tagging: Hanjie Chen
 - Semantic Segmentation: Sanxing Chen

References

- 1. J. Lafferty, A. McCallum, and F. Pereira. **Conditional Random Fields: Probabilistic Models for segmenting and labeling sequence data**. In *Proc. ICML*, 2001.
- 2. T. Finley and T. Joachims. Training structural SVMs when exact inference is intractable. In *Proc. ICML*, 2008.
- 3. B. Taskar, C. Guestrin, and D. Koller. Max-Margin Markov Networks. In Proc. NIPS, 2003.
- 4. I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large Margin Methods for Structured and Interdependent Output Variables. *JMLR*, 2005.
- 5. A. Krizhevsky, I. Sutskever, and G. E. Hinton. **ImageNet Classification with Deep Convolutional Neural Networks**. In *Proc. NIPS*, 2012.
- 6. Carlo Ciliberto, Francis Bach, and Alessandro Rudi. **Localized structured prediction**. *arXiv preprint* arXiv:1806.02402, 2018.
- 7. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. **Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation**. In *Proc. NIPS*, 2014.
- 8. S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. H. S. Torr. **Conditional random** fields as recurrent neural networks. In *Proc. ICCV*, 2015.
- 9. T. de Campos, B. R. Babu, and M. Varma. Character recognition in natural images. 2009.
- 10. D. Belanger and A. McCallum. Structured Prediction Energy Networks. In Proc. ICML, 2016.
- 11. D. Belanger, B. Yang, and A. McCallum. **End-to-end learning for structured prediction energy networks**. In *Proc. ICML*, 2017.
- 12. L. Tu and K Gimpel. Learning approximate inference networks for structured prediction. In Proc. ICLR, 2018.
- 13. M. J. Huiskes and M. S. Lew. **The mir flickr retrieval evaluation**. In *Proc. ACM international conference on Multimedia information retrieval. ACM*, 2008.
- 14. E. Borenstein and S. Ullman. Class-specific, top-down segmentation. In *Proc. ECCV*, 2002.