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Motivation
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Resource Management is everywhere

source: [6]



Motivation
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An Example online multi-resource allocation 
problem, e.g. CPU, memory.

Many factors to consider: NP-hard
CPU + GPU + Memory

source: [6]



Motivation

• Increased complexity of resource management 
algorithms. 

• Resource manager/scheduler should account for 
data locality, levels of parallelism, frequency of 
collective synchronizations etc.

• Cost model complexity for a job scheduler 
– job dimensions
– queue size
– execution time and available resources
– job locality - shared datasets 4



Motivation 

Current approach

- Assume a simple system model 
- Come up with a set of heuristics
- Iteratively test and tune the heuristics in real system

Alternative approach

- Reinforcement Learning: Learning via interacting with 
the environment.

5Datacenter cooling



Background - Schedulers

● Job placement policies
– First Come First Serve (FCFS)
– Shortest Job First (SJF)
– Dominant Resource Fairness (DRF)
– Least Attained Service (LAS)
– more...

• Traditional Heuristics based schedulers use a 
combination of these policies to 
maximize/minimize some objective function.



Background - Reinforcement Learning 
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Sutton and Barto: The agent-environment interaction in reinforcement learning.[5]

In RL, the data is not Independent and Identically 
Distributed. The outcome depends on the previous 
state(s) and action(s).

Reward Hypothesis: All goals can be described as 
maximising expected cumulative reward.



Related Work

• DeepRM: Uses RL for cluster scheduling by modeling 
the cluster state using image-like representation. (2016)

• Gandiva: Utilizes domain-specific knowledge to improve 
latency and efficiency of training DL models in a GPU 
cluster. (2018)

• Decima: Uses RL for scheduling job in Tensorflow like 
framework. Decima heavily focuses on DL jobs that 
have DAG like dependencies, optimizing for placing 
DAG tasks on the cluster. (2019)
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Claim / Target Task

• Claim: Reinforcement Learning agent can 
learn better scheduling policies for given 
cluster constraints than heuristics based 
schedulers.

• CuSH
– Employs DNN and Reinforcement Learning to achieve 

optimal performance. 
– Learns to make better scheduling choices by training 

on a dataset that contains jobs history, available 
resources and performance characteristics.
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An Intuitive Figure Showing WHY Claim
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Reference: CuSH paper



Proposed Solution

• Scheduler as two level system i.e two separated 
DNNs for job selection and policy allocation.

• The reward function dynamically adjusts based on 
application.

• RL environment as cluster with 
– N - no. of jobs 
– R - resources 
– Sr - Fixed no.of resource per node 
– Q - jobs to be scheduled 11



Proposed Solution

• Two allocation policies
– Depth-first policy: assign requested resources 

utilizing as few nodes as possible.
– Breadth-first policy: assign requested 

resources utilizing as many nodes as possible

• Two different workloads
– Compute intensive 
– Network intensive
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Cluster scheduling problem setting

• Allocate multiple resources

• Resource requests are 
known

• Non-preemptive jobs

Goal: Minimize averaged 
normalized turnaround time
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Implementation

Two main scheduler modules

1. Job selector module (JSM)
2. Policy selector module (PSM)

14
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RL - Observe

source: [6]



16

RL - Take action

Naively considering all possible state/action pairs will 
be exponential cost.

Solution: Sequential allocation



17

RL - Take action

Naively considering all possible state/action pairs will 
be exponential cost.

Solution: Sequential allocation
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RL - Take action

Get Reward:

A penalty of (-1/job_len) for every unfinished job



Implementation 
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The θ1 are network 
parameters of the JSM 
and θ2 parameters of 
the policy selector. 

Then πθ1 and πθ2 as 
the JSM and PSM 
networks, respectively.

source: cuSH paper



Experimental Strategy

• CuSH: Code not open sourced

• DeepRM [2][6] by MIT is open source. CuSH 
is based on this work.
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CuSH vs. DeepRM
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Differences CuSH DeepRM

Architecture JSM and PSM JSM

Key Metric averaged normalized 
turnaround time

average job slowdown

Input format Wait time for jobs in 
queue

Binary matrices

Job duration Bounded Unbounded

Resource Locality Yes No

Workload Type Yes No



Experimental Results
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Graphs generated by presenters, using DeepRM [2] code



Experimental Results
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Graphs generated by presenters, using DeepRM [2] code



Conclusion and Future Work

• Resource management using traditional Heuristics 
based scheduling does not always give best 
schedule.

• Better job scheduling subject to constraints can be 
achieved using DNN and RL. 

• CuSH - an RL implementation outperforms the best 
heuristic-based approaches, delivering up to 19% 
lower normalized turnaround time.
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Work distribution
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Paper selection Vanamala, Prof. Qi

Paper review slides Equal contribution

Experiments Individually ran DeepRM 
code and generated 
results/graphs

Slides with results Equal contribution



Questions?

Thank You for your attention!
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Data Summary

Input for the NN

– Merge cluster and queue into one matrix 
representation. 

– The cluster nodes are concatenated together along 
the x-axis, forming R matrices of N x Sr ×T size, 
which is the same size of the representation of the 
waiting jobs. 

– The input of the job scheduler module is a three-
dimensional matrix of size (�R N · Sr ) × (T ) × (Q + 
1)
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Implementation

1. Job selector module (JSM)
– Current state as input image: jobs in the 

cluster, waiting jobs, resources.
– a CNN using 16 2x2 filters, stride=1 and 

without padding followed by a ReLU, batch 
normalization and a softmax layer to predict 
probability for each action.
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Implementation

2. Policy selector module (PSM)

• goal of selecting which policy to use to allocate 
a job that has to be scheduled.

• The module is trained with policy gradient.
• The value return vt is only based on the local 

action and its reward value rt. 
• The return is the locality penalty (vt =rt =pj), that 

is calculated using the projected workloads data.
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Data Summary
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source: cuSH paper



Conclusion and Future Work

• Current model requires workload type to 
be specified by the user.

• Better approach would be to use dynamic 
scheduling
– unspecified job types can be classified as 

“unknown”
– After few executions, the job type can be 

automatically classified with a ML model
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DeepRM Architecture
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Source: DeepRM [2] paper


