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Motivation

We now have huge amounts of data generated by users

Stakeholders analyze data for insights

Insights incur the cost of user privacy

Algorithms amplify bias in data



Motivation

- Not only an ethical obligation, a legal one as well
- GDPR outlines the right to be forgotten

- Title VII of the Civil Rights Act (USA) bans
discriminative hiring

- Challenges:

- Expensive to train bespoke models for protected groups

- We might not know sensitive features!



Motivation

- What if we could remove sensitive features?
- Geo-location data

- Skin colour
- Gender
- Age
- Without compromising on accuracy!



Background

- Submodular Optimization:
- Formalizes the idea of diminishing returns

A function is submodular if Given AeBeV,j ¢ A€B,jeV

flAvj) = fA) =fBUJj)-f(B)

- Problems like ML, web search, social network, crowd
sourcing, user modeling

Bertsimas, D., Brown, D. B., and Caramanis, C. Theory andapplications of robust optimization.SIAM review, 53(3):464-501, 2011.



Related Work

Nemhauser et al (1978) demonstrated a simple greedy
algorithm that starts with an empty set and simply adds
elements with the highest marginal utility provides a

{1 — 1/.} approximation guarantee

Kraus et al (2008) introduced classic cardinality constrained
submodular maximization for the first time, however returned
a set that was logarithmically larger than k, the cardinality



Related Work

Orlin et al (2016) could output a set of size k in polynomial
time however it was only robust to o(vVk) elements

Mirzasoleiman et al (2017) developed a streaming algorithm
that was robust to any d elements, however it required
massive amounts of memory for k and d



Claim / Target Task

To identify an (a, d) robust randomized core set for a set V
A randomized robust core set is a random set A € IV such that

forany D € V ofsize |[D| < d, thereexistsa B € A\D, |B| < k
such that

E[f(B)] 2 a *maxf ({S|SCSV\D,|S|<k})



An Intuitive Figure Showing WHY Claim

A —B =D, f(B) >= alpha * f(S)



Robust-CoreSet-Centralized

Robust-CoreSet-Streaming

Robust-Distributed



Implementation: Robust-CoreSet-Centralized

B

o Ul

. Select the d + 1 largest element in V and set aside the d+1 largest

elements in V into Vt.
Set T to the set of (1+e_i) such that (1 + sigma)”i is less than the change
in utility of d and greater than the change in utility of d divided by (2 (1 +
sigma)k)
SetA tand B ttothenull setforalltinT
ForalltinT,
1. while the size of B is greater than d/sigma, add a random element to
At from B
« defining Bt as all e in V such that the value gained by adding e to
At is less than (1+e)t but greater than t

. Set aside all the elements in V not in Bt or At

Union Bt with Vt and return it along with A t as the core set



Implementation: Robust-CoreSet-Streaming

W=

o 0

Create two sets, A tand B t
All of the elements in A_t having greater than t marginal gains
Good enough elements are in B_t, which only accepts elements within a
certain range of utility. When B_t exceeds a certain size and becomes too
big, we pick a random element and add it to A t

1. This guarantees that the elements being added to A have a similar

gain

We must then re-compute the marginal gain of the elements in B_t
This continues until we have k elements in A or until the data stream ends
There are at most d elements with marginal gains within the range
acceptable to B t
The core set is the union of B_tand A t



Implementation: Robust-Distributed

—

First, randomly distribute data onto m machines
2. Each machine runs Robust-Coreset-Centralized as described earlier on its

local data

3. After the deletion of set D, the central machine runs m instances of
Robust-Centralized to find the Solutions S |

4. It also runs the classic greedy on the union of the sets from all the
machines to find a solution T

5. The best answer is contained in the sets Sand T

6. BONUS: you can run Robust-CoreSet-Centralized on the output of
Robust-Distributed to get an ultra-compact set



= Location Data from publicly available data sets

= The goal is to find k representative samples from manhatten latitude longitude

data

= The Adult Income Dataset

= Used to test feature deletion for submodular feature selection

= Census1990

» Used as a large dataset to understand Robust-Distributed performance

14



Experiment

For experiment 1, the Manhattan location representation experiment, the
proposed set of algorithms came up with better representational values and

used less memory

For experiment 2, predicting adult income data with missing features, the
SVM classifier with greedy selected features, had an accuracy of 83%, after
deleting race and class sensitive features, the accuracy drops to 79%, when
trained on the features found by Robust-Centralized and Robust-Streaming,

the performance only dropped to 83.3%

Robust-Distributed allows for summarizing a data set of almost 2.5 million

into just 4,500 points, robust up until deleting 80% of the items
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generate the graphs was not publicly available

These are the results from the original paper, the data used to
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(a) Uber dataset: we setd = 5 and k = 20. (b) Uber dataset: we set d = 5 and » = 100.

Figure 1. (a) The effect of deletion on the performance of algorithms with respect two different deletion strategies; (b) memory complexity
of robust algorithms for different cardinality constraints; (c) The effect of deletion on the performance for feature selection.
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Experimental Analysis

= These are the results from the original paper, the data used to
generate the graphs was not publicly available

Table 2. The comparison of Naive Bayes and SVM classifiers for
Adult Income dataset. Ten sensitive features are deleted. The
number of stored features is reported in parenthesis.

Algorithm Naive Bayes (Acc.) SVM (Acc.)
All features 0.798 0.830
GREEDY 0.788 0.796
GREEDY p 0.781 0.793
Rob-Cent 0.781 (22) 0.791
Rob-Stream 0.781 (29) 0.791
ROBUST 0.779 (39) 0.788

STAR-T-GREEDY 0.779 (50) 0.787




Experimental Analysis

= These are the results from the original paper, the data used to

generate the graphs was not publicly available
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DISTRIBUTED for four different deleting strategies.



Provided the first scalable and memory efficient algorithms for deletion
robust submodular maximization

They showcased how much powerful the algorithms were in real world
scenario for preserving privacy
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Challenges in Reproducing Results

o o

. There were many references to variables in the formulas that were not

explained, instantiated, or clarified in other parts of the formula
The dataset preprocessing steps loosely described in the paper.

1. More later: they claimed to produce 101 binary features from the data,

unclear how this is actually possible given the data

| personally didn’t have a lot of background and terminology that the
general audience for this paper has
While the paper did offer some intuition for how the concepts worked, they
weren'’t fully flushed out
Being solo, | didn’t have a team to bounce ideas off of
There is very little to no existing open code or data available for
related/similar papers for this particular research problem. So | had to do a
lot of the work from complete scratch



What I did

I always able to reproduce experiment 2. Experiment 3
required hardware beyond my means and Experiment 1 and 2
tested the effectiveness of the same algorithms, just on an

unwieldy + inconvenient dataset.

Experiment 1 also required implementing several other
algorithms that have only been written in research papers.
This would mean reproducing two other papers so I didn’t

pursue that particular experiment.
21



VY RESULTS: Re

I implemented the Robust-Coreset-Centralized (by definition also the Robust Coreset) algorithms

= SVM Result

» lazy greedy feature selection: 79.08%
» Submodular detection feature selection: 83.39%

» no feature selection: 83.85%

= Naive Bayes Results
» lazy greedy feature selection: 78.91%

» Submodular detection feature selection: 78.89%

» no feature selection: 78.06%
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I implemented the Robust-Coreset-Centralized (by definition also the Robust Coreset) algorithms

= SVM Result
» lazy greedy feature selection: 78.96%
= fancy research feature selection: 81.79%

» no feature selection: 83.92%

= Naive Bayes Results
» lazy greedy feature selection: 78.91%

» Submodular detection feature selection: 77.86%

= o feature selection: 78.23%
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