
Scalable Deletion-Robust Submodular
Maximization: Data Summarization with

Privacy and Fairness Constraints
Reproduced By: Rohit Musti (on my own)

December 5, 2019

1

UVA CS 6316: Machine Learning : 2019 Fall
Course Project: Deep2Reproduce @
https://github.com/qiyanjun/deep2reproduce/tree/master/2019Fall

https://github.com/qiyanjun/deep2reproduce/tree/master/2019Fall

Motivation

2

- We now have huge amounts of data generated by users

- Stakeholders analyze data for insights

- Insights incur the cost of user privacy

- Algorithms amplify bias in data

Motivation

3

- Not only an ethical obligation, a legal one as well

- GDPR outlines the right to be forgoDen

- Title VII of the Civil Rights Act (USA) bans
discriminative hiring

- Challenges:

- Expensive to train bespoke models for protected groups

- We might not know sensiNve features!

Motivation

4

- What if we could remove sensitive features?

- Without compromising on accuracy!

- Geo-location data
- Skin colour

- Age
- Gender

Background

- Submodular OpNmizaNon:

Bertsimas, D., Brown, D. B., and Caramanis, C. Theory andapplications of robust optimization.SIAM review, 53(3):464–501, 2011.

- Formalizes the idea of diminishing returns

𝐴 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑠𝑢𝑏𝑚𝑜𝑑𝑢𝑙𝑎𝑟 𝑖𝑓 𝐺𝑖𝑣𝑒𝑛 𝐴 𝜖 𝐵 𝜖 𝑉, j ∉ 𝐴 ∉ 𝐵, 𝑗 𝜖 𝑉

𝑓 𝐴 ∪ 𝑗 − 𝑓 𝐴 ≥ 𝑓 𝐵 ∪ 𝑗 − 𝑓(𝐵)

- Problems like ML, web search, social network, crowd
sourcing, user modeling

Related Work

6

Nemhauser et al (1978) demonstrated a simple greedy
algorithm that starts with an empty set and simply adds
elements with the highest marginal utility provides a
1 − ⁄A B approximation guarantee

Kraus et al (2008) introduced classic cardinality constrained
submodular maximizaNon for the first Nme, however returned
a set that was logarithmically larger than 𝑘, the cardinality

Related Work

7

Orlin et al (2016) could output a set of size 𝑘 in polynomial
time however it was only robust to 𝑜(𝑘) elements

Mirzasoleiman et al (2017) developed a streaming algorithm
that was robust to any 𝑑 elements, however it required
massive amounts of memory for 𝑘 and 𝑑

Claim / Target Task

8

To identify an 𝛼, 𝑑 robust randomized core set for a 𝑠𝑒𝑡 𝑉

A randomized robust core set is a random set 𝐴 ⊆ 𝑉 such that
for any 𝐷 ⊆ 𝑉 of size 𝐷 ≤ 𝑑 , there exists a 𝐵 ⊆ 𝐴\𝐷, 𝐵 ≤ 𝑘
such that

𝔼 𝑓 𝐵 ≥ 𝛼 ∗ max 𝑓 (𝑆 𝑆 ⊆ 𝑉\D, |𝑆| ≤ 𝑘 })

An Intuitive Figure Showing WHY Claim

9

V
A

B

A – B = D, f(B) >= alpha * f(S)

S

Proposed Solution

Robust-CoreSet-Centralized

Robust-CoreSet-Streaming

Robust-Distributed

Implementation: Robust-CoreSet-Centralized

1. Select the d + 1 largest element in V and set aside the d+1 largest
elements in V into Vt.

2. Set T to the set of (1+e_i) such that (1 + sigma)^i is less than the change
in utility of d and greater than the change in utility of d divided by (2 (1 +
sigma)k)

3. Set A_t and B_t to the null set for all t in T
4. For all t in T,

1. while the size of B is greater than d/sigma, add a random element to
At from B
• defining Bt as all e in V such that the value gained by adding e to

At is less than (1+e)t but greater than t

5. Set aside all the elements in V not in Bt or At
6. Union Bt with Vt and return it along with A_t as the core set

Implementation: Robust-CoreSet-Streaming

1. Create two sets, A_t and B_t
2. All of the elements in A_t having greater than t marginal gains
3. Good enough elements are in B_t, which only accepts elements within a

certain range of utility. When B_t exceeds a certain size and becomes too
big, we pick a random element and add it to A_t
1. This guarantees that the elements being added to A have a similar

gain
4. We must then re-compute the marginal gain of the elements in B_t
5. This continues until we have k elements in A or until the data stream ends
6. There are at most d elements with marginal gains within the range

acceptable to B_t
7. The core set is the union of B_t and A_t

Implementation: Robust-Distributed

1. First, randomly distribute data onto m machines
2. Each machine runs Robust-Coreset-Centralized as described earlier on its

local data
3. After the deletion of set D, the central machine runs m instances of

Robust-Centralized to find the Solutions S_i
4. It also runs the classic greedy on the union of the sets from all the

machines to find a solution T
5. The best answer is contained in the sets S and T

6. BONUS: you can run Robust-CoreSet-Centralized on the output of
Robust-Distributed to get an ultra-compact set

Data Summary

§ Location Data from publicly available data sets
§ The goal is to find k representative samples from manhatten latitude longitude

data

§ The Adult Income Dataset

§ Used to test feature deletion for submodular feature selection

§ Census1990
§ Used as a large dataset to understand Robust-Distributed performance

14

Experimental Results

§ For experiment 1, the Manhattan location representation experiment, the

proposed set of algorithms came up with better representational values and

used less memory

§ For experiment 2, predicting adult income data with missing features, the

SVM classifier with greedy selected features, had an accuracy of 83%, after

deleting race and class sensitive features, the accuracy drops to 79%, when

trained on the features found by Robust-Centralized and Robust-Streaming,

the performance only dropped to 83.3%

§ Robust-Distributed allows for summarizing a data set of almost 2.5 million

into just 4,500 points, robust up until deleting 80% of the items

15

Experimental Analysis

§ These are the results from the original paper, the data used to

generate the graphs was not publicly available

16

Experimental Analysis

§ These are the results from the original paper, the data used to

generate the graphs was not publicly available

17

Experimental Analysis

§ These are the results from the original paper, the data used to

generate the graphs was not publicly available

18

Conclusion and Future Work

• Provided the first scalable and memory efficient algorithms for deletion
robust submodular maximization

• They showcased how much powerful the algorithms were in real world
scenario for preserving privacy

19

Challenges in Reproducing Results

1. There were many references to variables in the formulas that were not
explained, instantiated, or clarified in other parts of the formula

2. The dataset preprocessing steps loosely described in the paper.
1. More later: they claimed to produce 101 binary features from the data,

unclear how this is actually possible given the data
3. I personally didn’t have a lot of background and terminology that the

general audience for this paper has
4. While the paper did offer some intuition for how the concepts worked, they

weren’t fully flushed out
5. Being solo, I didn’t have a team to bounce ideas off of
6. There is very little to no existing open code or data available for

related/similar papers for this particular research problem. So I had to do a
lot of the work from complete scratch

What I did

I always able to reproduce experiment 2. Experiment 3

required hardware beyond my means and Experiment 1 and 2

tested the effectiveness of the same algorithms, just on an

unwieldy + inconvenient dataset.

Experiment 1 also required implementing several other

algorithms that have only been written in research papers.

This would mean reproducing two other papers so I didn’t

pursue that particular experiment.
21

MY RESULTS: Robust Centralized Core - Adult Income Dataset

I implemented the Robust-Coreset-Centralized (by definition also the Robust Coreset) algorithms

§ SVM Result
§ lazy greedy feature selection: 79.08%

§ Submodular detection feature selection: 83.39%

§ no feature selection: 83.85%

§ Naïve Bayes Results
§ lazy greedy feature selection: 78.91%

§ Submodular detection feature selection: 78.89%

§ no feature selection: 78.06%

22

MY RESULTS: Robust Core Stream - Adult Income Dataset

I implemented the Robust-Coreset-Centralized (by definition also the Robust Coreset) algorithms

§ SVM Result
§ lazy greedy feature selection: 78.96%

§ fancy research feature selection: 81.79%

§ no feature selection: 83.92%

§ Naïve Bayes Results
§ lazy greedy feature selection: 78.91%

§ Submodular detection feature selection: 77.86%

§ no feature selection: 78.23%

23

References

24

References

25

References

26

References

27

References

28

