UVA CS 6316: Machine Learning : 2019 Fall Course Project: Deep2Reproduce @ https://github.com/qiyanjun/deep2reproduce/tree/master/2019Fall

Modern Neural Networks Generalize on Small Data Sets

Preproduced by: Jingyuan Chou & Tairan Song 12/05/2019

Motivation

- Explain the generalization ability of very high capacity neural networks:
 - Zhang[1] suggest SGD may provide implicit regularization by encouraging low complexity solutions to the optimization.
 - Others Explore the effect of margins on generalization error
- Explain Why the neural network is surprisingly resistant to overfitting
- Large datasets needed for training properly
- The way neural network reaches to variance reduction is mysterious.
- How about on much richer class of small datasets?

Background

- Great deal of recent research are aimed to explain the generalization ability of very high capacity neural networks:
- There exists limitations in previous experiments, concentrated on a small set of image classification tasks:
 - Over half of the papers in NIPS 2017, ICML 2017
 - MNIST, CIFAR-10, CIFAR-100, ImageNet share same characteristics
 - Similar problem domain, very low noise rates, balanced classes, relatively large training sizes

Related Work

- Zhang,C.(2017)[1] Understanding deep learning requires rethinking generalization, ICML
 - Stochastic Gradient Descent may provide implicit regularization by encouraging low complexity solutions to the neural network optimization problem
- Bartlett P.L et al.(2017).[2] Spectrally-normalized margin bounds for neural network. NIPS
- Liang, T. at al.(2017).[3] Fisher-rao metric, geometry, and complexity pf neural netowrks. arXiv
 - Explore the effect of margins on generalization error, similar to the margin-based view of Adaboost in the boosting literature that bound test performance in terms of the classifier's confidence in its predictions.
- Other:
 - Investigate the sharpness of local minimum found by training a neural network with SGD

Claim / Target Task

- The central aim of the paper is to identify the variance stabilization that occurs when training a deep neural network
 - Dedicated to decomposing a neural network into an ensemble of sub-networks (low bias, low variance)
- Similar manner as random forest

Proposed Solution I

- To establish a view that a network has a natural representation as an ensemble classifier
- Network Decomposition:
 - Given a regular network in a binary classification setting. In the case of a network with L hidden layers, each layer with M hidden nodes:

- σ is sigmoid function, g is activation function, $W^{l+1} \in R^{1*M}$, $W^1 = R^{M*P}$, and $W^L \in R^{M*M}$ for l = 2, ..., L, and $z^0 = x$
- In this paper, L = 10, M = 100, g is ELU activation function

Proposed Solution II

- One way for decomposition is at the final hidden layer:
 - Fix an integer $K \leq M$; and another matrix $\alpha \in \mathbb{R}^{M * K}$, with

 $\sum_{k=1}^{K} \alpha_{m,k} = W_{1,m}^{L+1}$ for m = 1,....,M

• Final logit output as a combination of units from the final hidden layer:

•
$$Z^{l+1}(x) = W^{L+1}g(z^L(x))$$

- = $\sum_{m=1}^{M} W_{1,m}^{L+1} g(z_m^l(x))$
- = $\sum_{m=1}^{M} \sum_{k=1}^{K} \alpha_{m,k} g(z_m^l(x))$
- = $\sum_{k=1}^{K} \sum_{m=1}^{M} \alpha_{m,k} g(z_m^l(x))$

• =
$$\sum_{k=1}^{K} f_k(x)$$

- With $f_k(x) = \sum_{m=1}^M \alpha_{m,k} g(z_m^l(x))$
- In words, we have decomposed the final layer of the network into a sum of component networks at the logit level

Model (Binary Setting)

Adapt to Softmax function when under multiclass classification setting

Proposed Solution II

9

Proposed Solution III

- Ensemble Hunting:
- We want to search for a set of ensemble components that are both diverse and low-bias.
 - Low-bias: impose restriction that each sub-network achieves very high training accuracy, 100% in the setting, for each sub-network f_k
 - Diversity: Desire each in the ensemble should be built from a different part of the full network, to make this happen, require the columns of α are sparse, non-overlapping, and the approach is to just simply force a random selection of half the entries of each column to be zero
 - For each of the K columns of α , sampled integers $(m_{1,k}, m_{2,k} \dots, m_{M/2,k})$ uniformly without replacement from 1 to M

Proposed Solution IV

 We need to use linear programming to find a matrix α∈ R^{M*K} that satisfied the required constraints:

•
$$\sum_{k=1}^{K} \alpha_{m,k} = W_{1,m}^{L+1}$$
 , $1 \le m \le M$

•
$$\alpha_{m_{j,k} \ k} = 0, \ 1 \le j \le \frac{M}{2}, 1 \le k \le K$$

• $\sum_{m=1}^{M} \alpha_{m,k} g(z_m^l(x)) y_i \ge 0, 1 \le i \le n, 1 \le k \le K$

An Intuitive Figure Showing WHY Claim I

Sample 400 points as training set under the following distribution:

$$p(y = 1|x) = \begin{cases} 1 & ||x||_2 \le 0.3\\ 0.15 & otherwise \end{cases}$$

10000 points as test set

Decision Boundary for 4 classifiers

Reproduction

Sub-Network Decision Boundary

14

Implementation

- Three classifier trained, random forest classifier; neural networks with dropout; neural networks without dropout
- Neural Networks:
 - 10 hidden layers
 - 100 nodes per layer
 - 200 epochs of gradient descent using Adam optimizer with learning rate of 0.001
 - He-initialization for each hidden layer
 - Elu activation function
 - Dropout with keep rate 0.85, serving as regularization, ridge-type penalty
- Random forest:
 - 500 trees, \sqrt{p} , p is the number of features in the dataset

Data Summary

- Total 116 small-sized datasets from UCI Data Repository
- Datasets span a wide variety of domains, including agriculture, credit scoring, health outcomes, ecology, and engineering applications etc.
- Highly imbalanced, non-trivial Bayes error rates, discrete features
- The median number of training cases is 601, the smallest only 10 observations.
- Number of features range from 3 to 262, categorical features included in half of the datasets, number of classes range from 2 to 100

Data Summary

	CATEGORICAL	CLASSES	FEATURES	Ν
MIN	0	2	3	10
25%	0	2	8	208
50%	4	3	15	601
75%	8	6	33	2201
MAX	256	100	262	67557

Table 1: Dataset Summary

Experimental Results

 RF outperforms unregularized NN on 72 out of 116 datasets by small margin, the mean difference in accuracy is 2.4%, with P value less than 0.01 through Wilcox signed rank test

Figure 3: Plots of cross-validated accuracy. Each point corresponds to a data set.

Experimental Analysis

- Using dropout helps when fitting noisy data sets, it is surprising that the absence of dropout doesn't lead to a collapse in performance.
- Using K=10 to decompose the network, each with 100% training accuracy, applied on datasets with at lease 500 observations, 80-20 train/test split randomly 25 times.
- Errors made by the sub-networks tend to have low correlation, which is the precise motivation for the random forest algorithm

Conclusion and Future Work

- Large neural network generalize well on small, noisy, data sets.
- neural networks can be trained on small data sets with minimal tuning
- Neural Networks have a natural interpretation as an ensemble of lowbias classifiers whose pairwise correlations are less than one.

 Future work aims to discern a mechanism for the decorrelation observed, and explore the link between decorrelation and generalization

Main References

• Zhang, C., Bengio , S., Hardt, M., Recht, B.,

Vinyals,O.(2017) Understanding deep learning requires rethinking generalization, ICML

- Bartlett P.L., Foster, D.J., and Telgarsky, M.J.(2017).
 Spectrally-normalized margin bounds for neural network. NIPS
- Liang, T., Poggio. T., Rakhlin, A., and Strokes, J.(2017).
 Fisher-rao metric, geometry, and complexity pf neural netowrks. arXiv