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Motivation
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• Explain the generalization ability of very high capacity neural 

networks:

• Zhang[1] suggest SGD may provide implicit regularization by 

encouraging low complexity solutions to the optimization.

• Others Explore the effect of margins on generalization error

• Explain Why the neural network is surprisingly resistant to overfitting

• Large datasets needed for training properly

• The way neural network reaches to variance reduction is mysterious.

• How about on much richer class of small datasets?



Background

• Great deal of recent research are aimed to explain the generalization 

ability of very high capacity neural networks:

• There exists limitations in previous experiments, concentrated on a 

small set of image classification tasks:
• Over half of the papers in NIPS 2017, ICML 2017

• MNIST, CIFAR-10, CIFAR-100, ImageNet share same characteristics

• Similar problem domain, very low noise rates, balanced classes, relatively large 

training sizes



Related Work
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• Zhang,C.(2017)[1] Understanding deep learning requires rethinking 
generalization, ICML

• Stochastic Gradient Descent may provide implicit regularization by encouraging 

low complexity solutions to the neural network optimization problem

• Bartlett P.L et al.(2017).[2] Spectrally-normalized margin bounds for 
neural network. NIPS

• Liang, T. at al.(2017).[3] Fisher-rao metric, geometry, and complexity pf 
neural netowrks. arXiv

• Explore the effect of margins on generalization error, similar to the margin-based 

view of Adaboost in the boosting literature that bound test performance in terms of 

the classifier’s confidence in its predictions.

• Other:
• Investigate the sharpness of local minimum found by training a neural network 

with SGD



Claim / Target Task

5

• The central aim of the paper is to identify the variance 

stabilization that occurs when training a deep neural network

• Dedicated to decomposing a neural network into an 

ensemble of sub-networks (low bias, low variance)

• Similar manner as random forest



Proposed Solution I

• To establish a view that a network has a natural representation as an 

ensemble classifier

• Network Decomposition:

• Given a regular network in a binary classification setting. In the case of 

a network with L hidden layers, each layer with M hidden nodes:

• 𝑧"#$ = 𝑊"#$𝑔 𝑧" , 𝑤𝑖𝑡ℎ 𝑙 = 0,…… , 𝐿

• 𝑓 𝑥 = 𝜎 𝑧4#$

• 𝜎 is sigmoid function, g is activation function, 𝑊"#$ ∈ 𝑅$∗8,𝑊$ =

𝑅8∗9, 𝑎𝑛𝑑 𝑊4 ∈ 𝑅8∗8 for 𝑙 = 2, … , 𝐿, 𝑎𝑛𝑑 𝑧> = 𝑥

• In this paper, L = 10, M = 100, g is ELU activation function



Proposed Solution II

• One way for decomposition is at the final hidden layer:

• Fix an integer 𝐾 ≤ 𝑀; and another matrix α ∈ 𝑅8 ∗D, with 

∑FG$D αH,F = 𝑊$,H
4#$ for m = 1,…..,M 

• Final logit output as a combination of units from the final hidden layer:

• 𝑍"#$ 𝑥 = 𝑊4#$𝑔 𝑧4 𝑥

• = ∑HG$8 𝑊$,H
4#$𝑔(𝑧H" (𝑥))

• = ∑HG$8 ∑FG$D αH,F𝑔(𝑧H" (𝑥))

• = ∑FG$D ∑HG$8 αH,F𝑔(𝑧H" (𝑥))

• = ∑FG$D 𝑓F(𝑥)

• With 𝑓F(𝑥) = ∑HG$8 αH,F𝑔(𝑧H" (𝑥))

• In words, we have decomposed the final layer of the network into a 

sum of component networks at the logit level
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Model (Binary Setting)

ELU ELU ELU ELU
H1 H2 … H9 H10

10 Hidden Layers

Input
Data FCN

Output

Sigmoid

Adapt to Softmax function when under  
multiclass classification setting
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Proposed Solution II

… … … … …𝒘𝟏 𝑤N … 𝑤8O$ 𝑤8

𝑤4#$

…Batch Size

𝑧4#$

𝑤4

M

M

… … … … …

𝑔(𝑧4(𝑥))

Batch Size

M



Proposed Solution III

• Ensemble Hunting:

• We want to search for a set of ensemble components that are both diverse
and low-bias. 

• Low-bias: impose restriction that each sub-network achieves very high 

training accuracy, 100% in the setting, for each sub-network 𝑓F
• Diversity: Desire each in the ensemble should be built from a different 

part of the full network, to make this happen, require the columns of α

are sparse, non-overlapping, and the approach is to just simply force a 

random selection of half the entries of each column to be zero

• For each of the K columns of α, sampled integers 

(𝑚$,F,𝑚N,F … ,𝑚8/N,F) uniformly without replacement from 1 to M



Proposed Solution IV

• We need to use linear programming to find a matrix α∈ 𝑅8∗D that satisfied 

the required constraints:

• ∑FG$D αH,F = 𝑊$,H
4#$ , 1 ≤ 𝑚 ≤ 𝑀

• αHS,T F = 0, 1 ≤ 𝑗 ≤ 8
N
, 1 ≤ 𝑘 ≤ 𝐾

• ∑HG$8 αH,F𝑔(𝑧H" (𝑥)) 𝑦X ≥ 0, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝐾



An Intuitive Figure Showing WHY Claim I
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Sample 400 points as training 
set under the following 
distribution:

𝑝 𝑦 = 1 𝑥 = [ 1 ||𝑥||N ≤ 0.3
0.15 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

10000 points as test set



Decision Boundary for 4 classifiers 
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Reproduction



Sub-Network Decision Boundary
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Implementation

§ Three classifier trained, random forest classifier; neural networks 

with dropout; neural networks without dropout

§ Neural Networks:
§ 10 hidden layers

§ 100 nodes per layer

§ 200 epochs of gradient descent using Adam optimizer with learning rate of 0.001

§ He-initialization for each hidden layer

§ Elu activation function

§ Dropout with keep rate 0.85, serving as regularization, ridge-type penalty

§ Random forest:

§ 500 trees, 𝑝, 𝑝 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
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Data Summary

§ Total 116 small-sized datasets from UCI Data Repository

§ Datasets span a wide variety of domains, including agriculture, 

credit scoring, health outcomes, ecology, and engineering 

applications etc.

§ Highly imbalanced, non-trivial Bayes error rates, discrete features

§ The median number of training cases is 601, the smallest only 10 

observations.

§ Number of features range from 3 to 262, categorical features 

included in half of the datasets, number of classes range from 2 to 

100
16



Data Summary
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Experimental Results

§ RF outperforms unregularized NN on 72 out of 116 datasets by small 

margin, the mean difference in accuracy is 2.4%, with P value less 

than 0.01 through Wilcox signed rank test
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Experimental Analysis

§ Using dropout helps when fitting noisy data sets, it is surprising that 

the absence of dropout doesn’t lead to a collapse in performance.

§ Using K=10 to decompose the network, each with 100% training 

accuracy, applied on datasets with at lease 500 observations, 80-20 

train/test split randomly 25 times.

§ Errors made by the sub-networks tend to have low correlation, 

which is the precise motivation for the random forest algorithm
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Conclusion and Future Work
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• Large neural network generalize well on small, noisy, data sets.

• neural networks can be trained on small data sets with minimal tuning

• Neural Networks have a natural interpretation as an ensemble of low-

bias classifiers whose pairwise correlations are less than one. 

• Future work aims to discern a mechanism for the decorrelation 

observed, and explore the link between decorrelation and 

generalization
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