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Claim / Target Task
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● In this project, the authors want to introduce a general, 

theoretically justified methodology for feeding neural networks 

with missing data.

● The authors also want to model the uncertainty on missing 

attributes by probability density functions.



An Intuitive Figure Showing 
WHY Claim
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● How to process missing data?



Motivation

4

● Collecting data is an important process for supervised learning. 

But sometimes data collected may have some missing fields. 

Discarding these data is a waste.

● Due to the great interest in deep learning in recent years, it is 

important to establish unified tools for practitioners to process 

missing data with arbitrary neural networks.

● This paper tries to figure out whether we can use data with 

missing value to train our model, how well the filling method 

performs, and whether it can be easily applied.



Background
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● Neural Network

● Expectation–Maximization Algorithm

● GMM



Related Work
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Generating candidates for filling missing attributes

● Use mean/mode to fill the data

● Train another model to predict the data(Neural Network/ 

Extreme Learning Machine/ K-Nearest Neighbors)

● Generative Adversarial Net(GAN)

Building Probabilistic model of incomplete data(Make assumption 

about the data)



e.g. MNIST Dataset

Adding Mask Randomly
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Simple Solution

Mean SoftImpute

KNN

● Neural Network
● Extreme learning machines
● …...
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Proposed Approach

Paper’s solution
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Formula Derivative

Missing data representation: 

Data point: (x,J) 

S = Aff[x, J] = x + span(e J)

Generalized neuron’s response:
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NR (Auxiliary function) Derivation



Key Formula for the program:
Mixture of nondegenerate gaussians in affine space
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Proposed Solution

Missing data representation: EM algorithm to estimate incomplete 

data density with the use of Gaussian Mixture Model. Then based on 

the data density, we can infer what the incomplete data should be. And 

the parameter of GMM is learnt by using neural network.  

Generalized neuron’s response: With changing of the first layer of 

the network structure, the method can be easily adapted to existing 

network structure to deal with the problem of incomplete data. 
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The Output Parameters of GMM

We get these parameters from GMM as input to the 
convolutional layer:
1. The weights of each mixture components.
2. The mean of each mixture component.
3. The covariance of each mixture component. 
4. A tensor of the specified shape filled with random 

normal values.

These parameters will be updated within the network 
structure(encoder-decoder network) to better model the 
data.



Network architecture

The author proposed to use encoder and decoder to solve the missing 

data of MNIST dataset. 
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Loss Function and Optimization 
Method

Loss Function: mean-square error

The loss inside the mask, outside the mask and total area can all be 

calculated. Since the input of model has no complete data, the loss 

function only based on outside the mask area.

 Optimization Method: RMSProp
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Implementation

Adaptation of a given neural network to incomplete data relies on the

2 steps:

• Estimation of missing data density with the use of mixture 

of diagonal Gaussians.

If data satisfies missing at random assumption, EM algorithm 

should be used to estimate incomplete data density with the use of 

GMM.

general case:

The network should learn optimal parameters of GMM with respect 

to its cost function.
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Implementation
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Adaptation of a given neural network to incomplete data relies on the

2 steps:

• Generalization of neuron’s response.

Generalizing the activation functions of all neurons in the first 

hidden layer of the network to process probability measures.

The modification only presents on the first hidden layer.

The paper performs several implementations:

• Reconstruction of incomplete MNIST images

• Running RBFN on 8 examples retrieved from UCI  repository



Data Summary

2 kinds of data set: 

1. MNIST with a removed square patch 

on each image(Uniformly sample the 

location)

2. UCI repo two-class data sets with 

internally missing attributes
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Experimental Results & Analysis

Evaluated in 2 types of 

architectures:

1. Autoencoder(AE)

Structure: 5 hidden layers with 

256, 128, 64, 128, 256 neurons 

(first use ReLU, rests use sigmoids 

) in encoder.

Results: After running for 100 

epochs, it gives sharper images and 

lower error.
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Experimental Results & Analysis

Evaluated in 2 types of architectures:

2. Radial basis function network(RBFN)

Structure: 1 hidden layer and softmax in the output layer applied with 

cross-entropy function

Results: Gives better result than others in most data sets
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Our experiment’s result:

(training epochs 50; learning rate: 

0.25; batch size: 75; hidden layer: 

25; distribution: 3)

bands: Train: 0.6089 test: 0.5056

kidney: Train: 0.8539 test: 0.8625 

hepatitis: Train: 0.7135 test: 0.6978 

horse: Train: 0.7291 test: 0.7555 



Conclusion and Future Work

● The paper presented a general approach for adapting neural 
networks to process incomplete data.

● The paper’s approach can be used for a wide range of 
networks.

● The paper gives comparable results to the other methods, 
some of which even require complete data in training.
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Task Allocation

Yiwen Su: Revise the presentation slides, analyze the source code 
structure and reproduce the result of the paper(AE). Try different 
methods to fill in the blank in the data, including KNN, softmulte and 
mean.

Zhanhong Tian: Revise the presentation slides, reproduce some of the  
result of the paper. Finding out one wrong description of formula in the 
paper. Visualize the data in MNIST.

Lulu Meng: Revise the presentation slides, reproduce RBFN model 
binary classification experiment of the paper.

Kai Lin: Revise the presentation slides, derive the formula in the paper.
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Thanks!
Any Qustions?



Why GMM parameters are tuned 
together within the network

After training with neural network, we can get a GMM, where its first 

component estimates a density of class 1, while the second component 

matches class 2, which means it can help perform better classification 

then estimating GMM directly by EM algorithm.
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