
On the Optimization of Deep Networks:

Implicit Acceleration by Overparameterization
Reproduced By: Fuxiao Liu, Yinzhu Jin, Dexuan Zhang, Tianyang Luo

UVA CS 6316: Machine Learning : 2019 Fall
Course Project: Deep2Reproduce @
https://github.com/qiyanjun/deep2reproduce/tree/master/2019Fall

https://github.com/qiyanjun/deep2reproduce/tree/master/2019Fall

Outline

● Background and Motivation

● Claim/Target Task

● Related Work and Proposed Solution

● Implementation Toolbox and Data Summary

● Experiments and Analysis

● Conclusion and Future Work

Background and Motivation

● Conventional wisdom in deep learning states that increasing depth improves
expressiveness but complicates optimization.

● Momentum, adaptive regularization and AdaGrad.
● This paper conveys a rather counterintuitive message: Increasing depth can

accelerate optimization.

An Intuitive Figure Showing WHY Claim

Outline

● Background and Motivation

● Claim/Target Task

● Related Work and Proposed Solution

● Implementation Toolbox and Data Summary

● Experiments and Analysis

● Conclusion and Future Work

Claim/Target Task

● If increasing depth leads to faster training on a given dataset, how can one
tell whether the improvement arose from a true acceleration
phenomenon, or simply due to better representational power (the
shallower network was unable to attain the same training loss).

● Linear Neural Network.
● Adding layers does not alter expressiveness; it manifests itself only in the

replacement of a matrix parameter by a product of matrices – an
overparameterization.

Outline

● Background and Motivation

● Claim/Target Task

● Related Work and Proposed Solution

● Implementation Toolbox and Data Summary

● Experiments and Analysis

● Conclusion and Future Work

Related Work
● Theoretical study of optimization in deep learning is a highly active area of research. Works along

this line typically analyze critical points (local minima, saddles) in the landscape of the training
objective, either for linear networks.

● Other works characterize other aspects of objective landscapes, for example Safran & Shamir
(2016) showed that under certain conditions a monotonically descending path from initialization to
global optimum exists.

● For linear networks. Like ours, these works analyze gradient descent through its corresponding
differential equations. Fukumizu (1998) focuses on linear regression with l2 loss, but does not
consider the effect of varying depth.

● Use of preconditioners to speed up optimization is also a well-known technique, including classic
Newton’s method.In terms of combining momentum and adaptive precondition- ing, Adam (Kingma
& Ba, 2014) is a popular approach,

Proposed Solution - theoretical derivation
● An N-layer linear neural network, can be seen as a function:

Denote: which is a k×d vector

● At each time of gradient descent:

𝜂: learning rate; 𝜆: weight decay coefficient

● The gradient of each parameter can be seen as a function of t, given learning
rate is very small

● Assume the following stands, which is approximately true if parameters are
initialized closed to zero:

● Then we can deduct that this equation also stands for ∀t ≥ t0.
● This leads to the expression of We along t, returning back to the discrete

situation, we can get update rule for We:

● To make it more interpretable, we can convert parameter matrix into a vector
in column-first order, then the equation is:

Actually equals to

whose eigenvectors are:

with corresponding eigenvalues:

Kronecker product

left/right singular
vector of We

singular values of We

The transformation applied to the gradient can be seen as a preconditioning,

which favors directions that correspond to singular vectors whose presence in We

is stronger.

Since parameters are initialized near zero, the location in parameter space can

also be regarded as the overall movement made by the algorithm.

Thus, overparameterization promotes movement along directions already taken by

the optimization, and therefore can be seen as a form of acceleration

Single-output Case

Two parts:

● Adaptive learning rate
● Amplify gradient on direction of We

Overparameterization effect cannot be attained via regularization

How to prove?

Brief summary:

● is not gradient field of any function

● Assume there exists such a function

● We can find a closed curve, s.t. Linear Integral of F(W) over this curve does

not vanish.

● This contradicts with the gradient theorem, which says for a continuously

differentiable function h, and a piecewise smooth curve, it stands:

Remember that the whole theoretical derivation relies on two approximation:

1. is true for initialization

1. Learning rate is very small so that the update rule can be seen as a
continuous function.

To fully justify the effects of overparameterization, experiments are needed.

Outline

● Background and Motivation

● Claim/Target Task

● Related Work and Proposed Solution

● Implementation Toolbox and Data Summary

● Experiments and Analysis

● Conclusion and Future Work

Implementation Toolbox

Data Summary
Gas Sensor Array Drift at Different Concentrations Dataset

● Obtained from UCI Machine Learning Repository
● Only ethanol data used
● Scalar regression task with 2565 examples comprising 128 features
● Perform scaling before the experiments (min-max scaling, Z-score

normalization)

MNIST dataset

● Embedded in a built-in tutorial in TensorFlow

Outline

● Background and Motivation

● Claim/Target Task

● Related Work and Proposed Solution

● Implementation Toolbox and Data Summary

● Experiments and Analysis

● Conclusion and Future Work

Experimental Results
Experiment 1

This experiment shows

that the theoretical

update rule can also

empirically explain the

update of deep linear

neural network.

We can also see that

the width of network is

not related to the

converging speed.

Experimental Results

Experiment 1

L2 loss/ 2 layer L2 loss/ 3 layer

L4 loss/ 2 layer L4 loss/ 3 layer

Experiment 1 Code

emulate function
implements the theoretical
update rule of linear neural
network.

Experiment 1 Code

Step 1. Calculate loss

Step 2. Get gradient

Step 3. Calculate adaptive learning rate scalar

Step 4. Calculate the projection of gradient on the direction of W

Step 5. Update W

Experiment 1 Code

This function simply trains a
linear neural network using
gradient descent.

Experimental Results

Figures show the convergence of the
gradient descent of optimization of single
layer against depth-2 and depth-3.

With L2 loss, deeper networks show
slower convergence rate. However, with
L4 loss, consist of quantitative analysis,
depth indicates optimization.

Gradient descent optimization of single
layer model vs. linear networks of depth 2
and 3

Experiment 2

Experimental Results
Experiment 2

Experiment 3 (Part 1)

Setting

● Linear neural network:
AdaGrad
AdaDelta
Overparameterization

● Epoch number:
600,000 epochs

Experiment 3 (Part 1)

Setting

● Linear neural network
AdaGrad
AdaDelta
Overparameterization

● Epoch number:
600,000 epochs

● Choose the best model
according to the loss in
the last epoch

Experiment 3 (Part 1)

Setting

● Linear neural network
AdaGrad: 128 * 1
AdaDelta: 128 * 1
Overparameterization: 128 * 1, 1 * 1, 1 * 1

● Learning rates for each model to search:
[0.00001, 0.00005, 0.0001, 0.0005, 0.001,
0.005, 0.01, 0.05, 0.1, 0.5]

● Choose the best model according to the
loss in the last epoch

● Epoch number: 600,000 epochs

Experiment 3 (Part 1): Result

In this paper’s setting, overparameterization is a more effective optimization strategy than some

carefully designed algorithms tailored for convex problems.

Experiment 3 (Part 2)

● Fixed learning rate: 0.0005
(Learning rate is 0.001 in the paper.)

● Epoch number: 60,000 epochs

Setting

● Linear neural network with the optimizer Adam:
1 layer: 128 * 1
2 layers: 128 * 1, 1 * 1
3 layers: 128 * 1, 1 * 1, 1 * 1

Experiment 3 (Part 2): Result

● When introducing overparameterization simultaneously with Adam, further acceleration is attained.

● This suggests that at least in some cases, not only plain gradient descent benefits from depth, but
also more elaborate algorithms commonly employed in state of the art applications.

Experiment 4 (MNIST Convolutional Network)

● This is an example implicit acceleration of overparameterization on
a nonlinear model by replacing hidden layers with depth-2 linear
networks

● Two minor changes:

Hidden dense layer: 3136×512 weight matrix replaced by multiplication of 3136×512
and 512×512 matrices.

Output layer: 512×10 weight matrix replaced by multiplication of 512×10 and 10×10
matrices

Code

Result

● As reported above for linear
networks, it is likely that for
non-linear networks the effect
of depth on optimization is
mixed – some settings
accelerate by it, while others
do not.

● Comprehensive
characterization of the cases
in which depth accelerates
optimization warrants much
further study.

Experimental Analysis

● Experiments are consistent with the predicted results from theoretical derivation.

● Experiments are conducted with Linear Neural Network to rule out the factor of

expressiveness.

● Experimental results indicates that overparameterization by depth can induce a faster model

training based on gradient descent over a convex problem.

● With sanity test, the experiment with convolutional network indicates that

overparameterization could also be useful in some non-idealized deep learning settings.

Outline

● Background and Motivation

● Claim/Target Task

● Related Work and Proposed Solution

● Implementation Toolbox and Data Summary

● Experiments and Analysis

● Conclusion and Future Work

Conclusion and Future Work
Overparameterization by depth can accelerate optimization.

● Linear neural networks
○ A preconditioning scheme: a combination between certain forms of adaptive learning rate and

momentum.
○ Depends on depth, instead of width: minimal computational price.

● Non-linear neural networks
○ Challenging to theoretically analyze
○ Empirically, replacing an internal weight matrix by a product of two accelerates optimization,

with expressiveness unchanged

Analysis is based on gradient descent over classic convex problems.

How about other explicit acceleration methods? Momentum? Adagrad?

Can we quantify the effect?

Job Split
Fuxiao Liu: Experiment 4, slides making, presentation

Yinzhu Jin: Experiment 1, theoretical derivation, slides making, presentation

Dexuan Zhang: Experiment 2, slides making, presentation

Tianyang Luo: Experiment 3, slides making, presentation

Reference
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,Devin, M.,
Ghemawat, S., Irving, G., Isard, M., et al. Tensorflow: A system for large-
scale machine learning. In OSDI, volume 16, pp. 265–283, 2016.

Arora, R., Basu, A., Mianjy, P., and Mukherjee, A. Understanding deep
neural networks with rectified linear units. International Conference on
Learning Representations (ICLR), 2018.

Baldi, P. and Hornik, K. Neural networks and principal component
analysis: Learning from examples without local minima. Neural networks,
2(1):53–58, 1989.

Boyce, W. E., DiPrima, R. C., and Haines, C. W. Elementary differential
equations and boundary value problems, volume 9. Wiley New York,
1969.

Buck, R. C. Advanced calculus. Waveland Press, 2003. Choromanska,
A., Henaff, M., Mathieu, M., Arous, G. B., and LeCun, Y. The loss
surfaces of multilayer networks. In Artificial Intelligence and Statistics,
pp. 192–204, 2015.

Cohen, N., Sharir, O., Levine, Y., Tamari, R., Yakira, D., and Shashua,
A. Analysis and design of convolutional networks via hierarchical tensor
decompositions. arXiv preprint arXiv:1705.02302, 2017.

Daniely, A. Depth separation for neural networks. arXiv preprint
arXiv:1702.08489, 2017.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121–2159, 2011.

Eldan, R. and Shamir, O. The power of depth for feedforward neural
networks. arXiv preprint arXiv:1512.03965, 2015.

Fukumizu, K. Effect of batch learning in multilayer neural networks. Gen,
1(04):1E–03, 1998.

Goh, G. Why momentum really works. Distill, 2017. doi: 10.
23915/distill.00006. URL http://distill.pub/2017/Momentum.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. Deep learning,
volume 1. MIT press Cambridge, 2016.

Goodfellow, I. J., Vinyals, O., and Saxe, A. M. Qualitatively
characterizing neural network optimization problems. arXiv preprint
arXiv:1412.6544, 2014.

Haeffele, B. D. and Vidal, R. Global Optimality in Tensor Factorization,
Deep Learning, and Beyond. CoRR abs/1202.2745, cs.NA, 2015.

Hardt, M. and Ma, T. Identity matters in deep learning. arXiv preprint
arXiv:1611.04231, 2016.

Hazan, E., Agarwal, A., and Kale, S. Logarithmic regret algorithms for
online convex optimization. Mach. Learn., 69(2-3):169–192, December
2007. ISSN 0885-6125.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385, 2015.

Helmke, U. and Moore, J. B. Optimization and dynamical systems.
Springer Science & Business Media, 2012.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International
conference on machine learning, pp. 448–456, 2015.

Jones, E., Oliphant, T., Peterson, P., et al. SciPy: Open source scientific
tools for Python, 2001–. URL http://www.scipy.org/. [Online; accessed
¡today¿].

Kawaguchi, K. Deep learning without poor local minima. In Advances in
Neural Information Processing Systems, pp. 586– 594, 2016.

Kingma, D. and Ba, J. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Lee, H., Ge, R., Risteski, A., Ma, T., and Arora, S. On the ability of
neural nets to express distributions. arXiv preprint arXiv:1702.07028,
2017.

Nesterov, Y. A method of solving a convex programming problem with
convergence rate o (1/k2). In Soviet Mathematics Doklady, volume 27,
pp. 372–376, 1983.

Nocedal, J. Updating quasi-newton matrices with limited storage.
Mathematics of Computation, 35(151):773–782, 1980.

Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Sohl-Dickstein, J.
On the expressive power of deep neural networks. arXiv preprint
arXiv:1606.05336, 2016.

Rodriguez-Lujan, I., Fonollosa, J., Vergara, A., Homer, M., and Huerta,
R. On the calibration of sensor arrays for pattern recognition using the
minimal number of experiments. Chemometrics and Intelligent
Laboratory Systems, 130:123–134, 2014.

Safran, I. and Shamir, O. On the quality of the initial basin in
overspecified neural networks. In International Conference on Machine
Learning, pp. 774–782, 2016.

Safran, I. and Shamir, O. Spurious local minima are common in two-
layer relu neural networks. arXiv preprint arXiv:1712.08968, 2017.

Saxe, A. M., McClelland, J. L., and Ganguli, S. Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks. arXiv
preprint arXiv:1312.6120, 2013.

Soudry, D. and Carmon, Y. No bad local minima: Data independent
training error guarantees for multilayer neural networks. arXiv preprint
arXiv:1605.08361, 2016.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R. Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, 15(1):1929–
1958, 2014.

Su, W., Boyd, S., and Candes, E. A differential equation for modeling
nesterovs accelerated gradient method: Theory and insights. In
Advances in Neural Information Processing Systems, pp. 2510–2518,
2014.

Tieleman, T. and Hinton, G. Lecture 6.5-rmsprop: Divide the gradient by
a running average of its recent magnitude. COURSERA: Neural
networks for machine learning, 4(2):26–31, 2012.

Vergara, A., Vembu, S., Ayhan, T., Ryan, M. A., Homer, M. L., and
Huerta, R. Chemical gas sensor drift compensation using classifier
ensembles. Sensors and Actuators B: Chemical, 166: 320–329, 2012.

Wibisono, A., Wilson, A. C., and Jordan, M. I. A variational perspective
on accelerated methods in optimization. Proceedings of the National
Academy of Sciences, 113(47):E7351–E7358, 2016.

Zeiler, M. D. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

Thank you!

