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Motivation and Background



Dialogue Act (DA)

Discourse structure is an important part for understanding
dialogue, and plays a key role in dialog generation system. A
useful way to describe discourse structure is identifying
Dialogue Act (DA), which represents the meaning of utterance
at a level of illocutionary force [Stolcke et al., 2000].

Tag Example
STATEMENT I’m in the engineering department.

REJECT Well, no.
OPINION I think it’s great.

AGREEMENT/ACCEPT That’s exactly it.
YES-NO-QUESTION Do you have any special training?

Table: Dialogue Act Example 3



Conventional vs. Neural Dialog System

I Conventional dialog system: the action in a semantic frame
usually contains hand-crafted dialog acts and slot values
[Williams and Young, 2007]. But it’s hard to design a
fine-grained system manually.

I Neural dialog system: is a powerful frameworks without
the need for hand-crafted meaning representations
[Chung et al., 2014]. But it cannot provide interpretable
system actions as in the conventional dialog systems.
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Goal

Based on the importance of dialogue act interpretation and
merits of neural dialog systems, the goal is to develop a neural
network model which can discover interpretable meaning
representations of utterances as a set of discrete latent variables
(latent actions).

5



Related Work



Latent Variable Dialog Models

I The models proposed by [Vlad Serban et al., 2016] are
based on Conditional Variational Autoencoders, where
latent variables facilitate the generation of long outputs
and encourage diverse responses.

I In the work discussed in [Zhao et al., 2017], dialog acts are
further introduced to guide the learning of the Conditional
Variational Autoencoders.

I For the recent research on task-oriented dialog system in
[Wen et al., 2017], discrete latent variables have been used
to represent intention .
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Sentence Representation Learning with Neural Networks

I Most work has been done for continuous distributed
representations of sentences , e.g. the Skip Thought learns
by predicting the previous and next sentences in
[Kiros et al., 2015].

I Even passing gradients through discrete variables is very
difficult, Gumbel-Softmax [Jang et al., 2016] make it
possible to back-propagate by using continuous
distribution sampling to approximate discrete distribution
sampling.
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Claim / Target Task and An Intuitive
Figure Showing WHY Claim



Proposed Model

I Develop an unsupervised neural recognition model that
can discover interpretable meaning latent actions from a
large unlabelled corpus.
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Proposed Model

Networks:

I Recognition network R: qR(z|x)
Map an sentence to the latent variable z

I Generation network G

Defines the learning signals that will be used to train
the representation of z.

The discovered meaning representations can be integrated with
encoder decoder networks to achieve interpretable dialog
generation.
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Proposed Solution and Implementa-
tion



Learning Sentence Representations

Two methods:

I Learning Sentence Representations from Auto-Encoding
I Learning Sentence Representations from the Context
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Learning Sentence Representations from Auto-Encoding

DI-VAE: Discrete infoVAE with BPR.

I Recognition network (RNN) last hidden state hR
|x |

represents x.
I Define z to be a set of K-way categorical variables

z � {z1...zm...zM}
I For each zm, define its posterior distribution as qR(zm |x).

And we use the Gumbel-Softmax trick (a trick to solve the
backpropagation problem for discrete variables) to sample
from this distribution.

I Transform the latent samples z1...zm to hG
0 , which is the

initial state of Generation network (RNN).
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Anti-Information Limitation of ELBO

VAEs often ignore the latent variable, especially when
equipped with powerful decoders, which named as posterior
collapse. To solve this problem, we decompose ELBO in a novel
way to understand its behavior.

LVAE � Ex[EqR(z|x)[logpG
(x|z)] − KL(qR(z|x)| |p(z))]

� Eq(z|x)p(x)[log p(x|z)] − I(Z,X) − KL(q(z)| |p(z))

where I(Z,X) is the mutual information, and q(z) � Ex[qR(z|x)].

This shows that the KL term in ELBO is trying to reduce the
mutual information between latent variables and the input
data, which explains why posterior collapse happens.
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VAE with Information Maximization and BPR

I Information Maximization: To correct the anti-information
issue, we maximize both data likelihood lowerbound and
the mutual information, so we optimize

LVAE + I(Z,X) � Eq(z|x)p(x)[log p(x|z)] − KL(q(z)| |p(z))
I Batch Prior Regularization (BPR): To minimize the

KL(q(z)| |p(z)).
Let xn be a sample from a batch of N data points, we have

q(z) ≈ 1
N

N∑
n�1

q(z|xn) � q′(z)

We can approximate KL(q(z)| |p(z)) by

KL(q′(z)| |p(z)) �
K∑

k�1
q′(z � k) log

q′(z � k)
p(z � k)

This equation is referred as BPR. 16



Learning Sentence Representations from the Context

DI-VST: DI-VAE to Discrete Information Variational Skip
Thought.

I Skip thought (ST): The meaning of language can be
inferred from the adjacent context.

I Use the same recognition network from DI-VAE to output
z′s posterior distribution qR(z|x).

I Given the samples from qR(z|x), two RNN generators are
used to predict the previous sentence xp and the next
sentences xn .

I Objective to maximize

LDI−VST � EqR(z|x)p(x)[log(pn
G(xn |z)pp

G
(xp |z))]−KL(q(z)| |p(z))
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Data Summary



Datasets

The proposed methods are evaluated on five datasets.

I Penn Treebank (PTB)
I Stanford Multi-Domain Dialog (SMD)
I Daily Dialog (DD)
I Switchboard (SW)
I Multimodal EmotionLines Dataset (MELD)
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Reproduction Experimental Results
and Analysis



Comparing Discrete Sentence Representation Models

Part 1: Evaluate proposed model performance
For comparison, we use several baselines model.
Unregularized models:

I DAE: Remove the KL(q |p) term from DI-VAE.
I DST: Remove the KL(q |p) term from DI-VST.

ELBO models: (KL-annealing and bag-of-word loss used)

I DVAE (posterior collapse): The basic discrete sentence VAE
that optimizes the ELBO with regularization term
KL(q(z|x)| |p(z)).

I DVST (posterior collapse): The basic discrete sentence
variational skip thought that optimizes the ELBO with
regularization term KL(q(z|x)| |p(z)).
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Comparing Discrete Sentence Representation Models

Other models:

I VAE: VAE with continuous latent variables (results by
Zhao et al., 2017).

I RNNLM: Standard GRU-RNN language model (results by
Zaremba et al.,2014).
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Comparing Discrete Sentence Representation Models

The comparing results (with the discrete latent space for all
models are M=20 and K=10 and Mini-batch size is 30):
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Reproduction Result

Dom Model PPL KL(q | |p) I(x , z)
PTB DAE 63.443 1.671 0.514

DVAE 73.744 0.249 0.025
DI-VAE 52.751 0.130 1.207

MELD DAE 55.884 2.047 0.237
DVAE 92.893 0.060 0.055
DI-VAE 44.800 0.054 1.005

DD DST xp :28.967/xn :29.659 2.303 0.000
DVST xp :87.964/xn :90.818 0.023 0.004
DI-VST xp :28.073/xn :28.085 0.084 1.015

MELD DST xp :68.237/xn :69.367 2.303 0.000
DVST xp :88.166/xn :88.148 0.032 0.002
DI-VST xp :67.324/xn :68.778 0.007 0.099
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Comparing Discrete Sentence Representation Models

Analysis:

I All models achieve better perplexity than an RNNLM,
which shows they manage to learn meaningful q(z|x).

I DI-VAE achieves the best results in all metrics compared
others.

I DI-VAE vs. DAE:
1. DAE learns quickly but prone to overfitting.
2. For DAE, since there is no regularization term in the latent

space, q(z) is very different from the p(z), which prohibits
us from generating sentences from the latent space.
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Comparing Discrete Sentence Representation Models

I DI-VST vs. DVST and DST:
1. DI-VST is able to achieve the lowest PPL.

I These results confirm the effectiveness of the proposed
BPR in terms of regularizing q(z)while learning
meaningful posterior q(z|x).
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Comparing Discrete Sentence Representation Models

Part 2: Understand BPR’s sensitivity
In order to understand BPR’s sensitivity to batch size N, we
varied the batch size from 2 to 60 (If N=1, DI-VAE is equivalent
to DVAE).
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Reproduction Result

For PTB dataset:
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Reproduction Result

For MELD dataset:
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Comparing Discrete Sentence Representation Models

Analysis:

I As N increases, perplexity, I(x, z)monotonically improves,
while KL(q | |p) only increases from 0 to approximate 0.16.

I After N > 30, the performance plateaus. Therefore, using
mini-batch is an efficient trade-off between q(z) estimation
and computation speed.
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Comparing Discrete Sentence Representation Models

Part 3: Relation between representation learning and the
dimension of the latent space
We set a fixed budget by restricting the maximum number of
modes to be about 1000, i.e. KM ≈ 1000.
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Reproduction Result

For PTB dataset:

K,M KM PPL KL(q | |p) I(x , z)
1000,1 1000 76.240 0.028 0.254
10,3 1000 72.815 0.054 0.539
4,5 1024 67.537 0.079 0.757

For MELD dataset:

K,M KM PPL KL(q | |p) I(x , z)
1000,1 1000 67.567 0.000 0.004
10,3 1000 65.051 0.017 0.440
4,5 1024 61.214 0.013 0.418

Analysis: Models with multiple small latent variables perform
significantly better than those with large and few latent
variables. 32



Interpreting Latent Actions

The question is to interpret the meaning of the learned latent
action symbols. The latent action of an utterance of xn is
obtained from a greedy mapping:

an � arg max
k

qR(z � k |xn)

We set M=3 and K=5, so there are at most 125 different latent
actions, and each xn can be represented by a1 → a2 → a3, e.g.
"How are you ?"→ 1-4-2.
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Interpreting Latent Actions

For manually clustered data: We utilize the homogeneity
metric that measures if each latent action contains only
members of a single class.

Summary: For acts, DI-VST performs better on DD and worse
on SW than DI-VAE. One reason is that the dialog acts in SW
are more fine-grained (42 acts) than the ones in DD (5 acts) so
that distinguishing utterances based on words in x is more
important than the information in the neighbouring utterances.

34



Reproduction Result

For DailyDialog Dataset with K=10, M=10:

DD
Act Emotion

DI-VAE 0.15972 0.10352
DI-VST 0.13797 0.07356

Analysis: The homogeneity of Act is larger than that of
Emotion, which indicates that the model can capture the
attribute of latent action better.
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Interpreting Latent Actions

Other Analysis:

I Since DI-VAE is trained to reconstruct its input and DI-VST
is trained to model the context, they group utterances in
different ways.

I For example, DI-VST would group “Can I get a restaurant”,
“I am looking for a restaurant” into one action where
DI-VAE may denote two actions for them.
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Interpreting Latent Actions

I An example latent actions discovered in SMD using the
methods.
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Conclusion and Future Work



Conclusion

I This paper presents a novel unsupervised framework that
enables the discovery of discrete latent actions and
interpretable dialog response generation.

I The main contributions reside in the two sentence
representation models DI-VAE and DIVST, and their
integration with the encoder decoder models.

I Experiments show the proposed methods outperform
strong baselines in learning discrete latent variables and
showcase the effectiveness of interpretable dialog response
generation.
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Future Work

I The findings suggest promising future research directions,
including learning better context-based latent actions and
using reinforcement learning to adapt policy networks.

I This work is an important step forward towards creating
generative dialog models that can not only generalize to
large unlabelled datasets in complex domains but also be
explainable to human users.
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Thank you!
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